Выход
Вход/Login
 
E-mail
Пароль/Password
Забыли пароль?
Введите E-mail и жмите тут. Пароль будет выслан на указанный адрес
Войти (LogIn)

 

Если вы первый раз здесь, то зарегистрируйтесь

Регистрация/Sign Up
Полное имя (Ф И О)/Full name
E-mail
Повторите E-mail
Телефон/Phone
Зарегистрироваться,
на ваш E-mail будет выслан временный пароль

Нажимая кнопку Зарегистрироваться, вы соглашаетесь с Правилами сайта и Политикой Конфиденциальности http://vidar.ru/rules.asp

 

Медицинская литература. Новинки


 

 

 

 

 

 
вce журналы << Поиск по всем журналам: э << очистить поиск << Анналы хирургической гепатологии << 2024 год << №4 <<
стр.135
отметить
статью

Особенности кишечной микробиоты в патогенезе и клиническом течении острого панкреатита

Сицский А. А., Какоткин В. В., Агапов М. А.
Вы можете загрузить полный текст статьи в формате pdf
Сицский А. А. - ФГАОУ ВО “Балтийский федеральный университет имени Иммануила Канта”, a.a.sitsskiy@mail.ru,
Какоткин В. В. - ФГАОУ ВО “Балтийский федеральный университет имени Иммануила Канта”, dr.kakotkinvv@gmail.com,
Агапов М. А. - ФГАОУ ВО “Балтийский федеральный университет имени Иммануила Канта”, getinfo911@mail.ru,

Цель. Анализ наиболее перспективных научно-практических направлений по изучению роли кишечной микробиоты и ее метаболитов в патогенезе и клиническом течении острого панкреатита.Материал и методы. Проведен систематический поиск литературы в базах данных PubMed, EMBASE, Cochrane, опубликованной за 20 лет. Найдено 5 метаанализов, 234 клинических исследования, 127 обзоров, 428 экспериментальных исследований. Отобрано 36 клинических исследований, 2 обзора, 18 экспериментальных исследований. Систематический обзор подготовлен в соответствии со стандартами PRISMA.Результаты. Структура кишечной микробиоты значительно отличается в группах здорового контроля и группах пациентов с острым панкреатитом. Микробиота пациентов с острым панкреатитом тесно коррелирует с системным воспалением и дисфункцией кишечного барьера. Наиболее часто при тяжелом остром панкреатите отмечали увеличение численности Enterococcus, Proteobacteria, Escherichia, Shigella, уменьшение общего многообразия микробиома, численности Bifidobacterium, Prevotella, Faecalibacterium, Blautia, Lachnospiraceae, Ruminococcaceae. Короткоцепочечные жирные кислоты, концентрация которых в крови может указывать на повышение проницаемости кишечной стенки, напрямую участвуют в патогенезе острого легочного повреждения при остром панкреатите.Заключение. Дальнейшее изучение состава кишечной микробиоты, ее метаболитов и возможностей ее модуляции у разных групп пациентов может стать основой для поиска новых стратегий в диагностике, лечении и профилактике острого панкреатита.

Ключевые слова:
поджелудочная железа, острый панкреатит, кишечная микробиота, метаболиты, предикторы инфицирования, кишечный барьер, pancreas, acute pancreatitis, intestinal microbiota, metabolites, infection predictors, intestinal barrier

Литература:
1.Дюжева Т.Г., Джус Е.В., Шефер А.В., Семененко И.А., Платонова Л.В., Гальперин Э.И. Парапанкреатит без КТ-признаков некроза поджелудочной железы у больных острым панкреатитом. Анналы хирургической гепатологии. 2016; 21 (2): 68–72. https://doi.org/10.16931/1995-5464.2016268-72
2.Ferreira Ade F., Bartelega J.A., Urbano H.C., de Souza I.K. Acute pancreatitis gravity predictive factors: which and when to use them? Arq. Bras. Cir. Dig. 2015; 28 (3): 207–211. https://doi.org/10.1590/S0102-67202015000300016
3.Алиева Г.Р., Муслимов Г.Ф., Байрамов Б.И., Зейналов Н.Д., Бехбудов В.В. Ассоциация между полиморфизмом гена гемоксигеназы-1 (HMOX1) и хроническим панкреатитом. Анналы хирургической гепатологии. 2022; 27 (1): 56–63. https://doi.org/10.16931/1995-5464.2022-1-56-63
4.Байчоров Э.Х., Бахтурин В.А., Ганджа Н.С., Салпагаров Ш.Р., Байрамуков Р.Р. Антимикробные пептиды и Ubiquitin protein ligase E3 при деструктивных формах острого панкреатита. Медико-фармацевтический журнал «Пульс». 2020; 22 (10): 74–80. https://doi.org/10.26787/nydha-2686-6838-2020-22-10-74-80
5.Watanabe T., Kudo M., Strober W. Immunopathogenesis of pancreatitis. Mucosal Immunol. 2017; 10 (2): 283–298. https://doi.org/10.1038/mi.2016.101
6.Peng C., Li Z., Yu X. The Role of pancreatic infiltrating innate immune cells in acute pancreatitis. Int. J. Med. Sci. 2021; 18 (2): 534–545. https://doi.org/10.7150/ijms.51618
7.Capurso G., Zerboni G., Signoretti M., Valente R., Stigliano S., Piciucchi M., Delle Fave G. Role of the gut barrier in acute pancreatitis. J. Clin. Gastroenterol. 2012; 46 (Suppl): S46–51. https://doi.org/10.1097/MCG.0b013e3182652096
8.Wang X., Gong Z., Wu K., Wang B., Yuang Y. Gastrointestinal dysmotility in patients with acute pancreatitis. J. Gastroenterol. Hepatol. 2003; 18 (1): 57–62. https://doi.org/10.1046/j.1440-1746.2003.02898.x
9.Van Felius I.D., Akkermans L.M., Bosscha K., Verheem A., Harmsen W., Visser M.R., Gooszen H.G. Interdigestive small bowel motility and duodenal bacterial overgrowth in experimental acute pancreatitis. Neurogastroenterol. Motil. 2003;15(3):267–276.https://doi.org/10.1046/j.1365-2982.2003
10.Gao S.L., Zhang Y., Zhang S.Y., Liang Z.Y., Yu W.Q., Liang T.B. The hydrocortisone protection of glycocalyx on the intestinal capillary endothelium during severe acute pancreatitis. Shock. 2015; 43 (5): 512–517. https://doi.org/10.1097/SHK.0000000000000326
11.Wang F., Li Q., Wang C., Tang C., Li J. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury. PLoS One. 2012; 7 (7): e42027. https://doi.org/10.1371/journal.pone.0042027
12.Albenberg L., Esipova T.V., Judge C.P., Bittinger K., Chen J., Laughlin A., Grunberg S., Baldassano R.N., Lewis J.D., Li H., Thom S.R., Bushman F.D., Vinogradov S.A., Wu G.D. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology. 2014; 147 (5): 1055–1063.e8. https://doi.org/10.1053/j.gastro.2014.07.020
13.Darnaud M., Dos Santos A., Gonzalez P., Augui S., Lacoste C., Desterke C., De Hertogh G., Valentino E., Braun E., Zheng J., Boisgard R., Neut C., Dubuquoy L., Chiappini F., Samuel D., Lepage P., Guerrieri F., Dore J., Brechot C., Moniaux N., Faivre J. Enteric delivery of regenerating family member 3 alpha alters the intestinal microbiota and controls inflammation in mice with colitis. Gastroenterology. 2018; 154 (4): 1009–1023. e14. https://doi.org/10.1053/j.gastro.2017.11.003
14.Kylanpaa-Back M.L., Takala A., Kemppainen E., Puolakkainen P., Kautiainen H., Jansson S.E., Haapiainen R., Repo H. Cellular markers of systemic inflammation and immune suppression in patients with organ failure due to severe acute pancreatitis. Scand. J. Gastroenterol. 2001; 36 (10): 1100–1107. https://doi.org/10.1080/003655201750422738
15.Zhao D., Yang F., Wang Y., Li S., Li Y., Hou F., Yang W., Liu D., Tao Y., Li Q., Wang J., He F., Tang L. ALK1 signaling is required for the homeostasis of Kupffer cells and prevention of bacterial infection. J. Clin. Invest. 2022; 132 (3): e150489. https://doi.org/10.1172/JCI150489
16.Shirey K.A., Blanco J.C.G., Vogel S.N. Targeting TLR4 signaling to blunt viral-mediated acute lung injury. Front. Immunol. 2021; 12: 705080. https://doi.org/10.3389/fimmu.2021.705080
17.Techarang T., Jariyapong P., Viriyavejakul P., Punsawad C. High mobility group box-1 (HMGB-1) and its receptors in the pathogenesis of malaria-associated acute lung injury/acute respiratory distress syndrome in a mouse model. Heliyon. 2021; 7 (12): e08589. https://doi.org/10.1016/j.heliyon.2021.e08589
18.Cheng P., Li S., Chen H. Macrophages in lung injury, repair, and fibrosis. Cells. 2021; 10 (2): 436. https://doi.org/10.3390/cells10020436
19.Dickson R.P., Schultz M.J., van der Poll T., Schouten L.R., Falkowski N.R., Luth J.E., Sjoding M.W., Brown C.A., Chanderraj R., Huffnagle G.B., Bos L.D.J. Biomarker Analysis in Septic ICU Patients (BASIC) Consortium. Lung microbiota predict clinical outcomes in critically ill patients. Am. J. Respir. Crit. Care Med. 2020; 201 (5): 555–563. https://doi.org/10.1164/rccm.201907-1487OC
20.Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., Mende D.R., Li J., Xu J., Li S., Li D., Cao J., Wang B., Liang H., Zheng H., Xie Y., Tap J., Lepage P., Bertalan M., Batto J.M., Hansen T., Le Paslier D., Linneberg A., Nielsen H.B., Pelletier E., Renault P., Sicheritz-Ponten T., Turner K., Zhu H., Yu C., Li S., Jian M., Zhou Y., Li Y., Zhang X., Li S., Qin N., Yang H., Wang J., Brunak S., Dore J., Guarner F., Kristiansen K., Pedersen O., Parkhill J., Weissenbach J., Bork P., Ehrlich S.D., Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464 (7285): 59–65. https://doi.org/10.1038/nature08821
21.Li X.Y., He C., Zhu Y., Lu N.H. Role of gut microbiota on intestinal barrier function in acute pancreatitis. World J. Gastroenterol. 2020; 26 (18): 2187–2193. https://doi.org/10.3748/wjg.v26.i18.2187
22.Tan C., Ling Z., Huang Y., Cao Y., Liu Q., Cai T., Yuan H., Liu C., Li Y., Xu K. Dysbiosis of intestinal microbiota associated with inflammation involved in the progression of acute pancreatitis. Pancreas. 2015; 44 (6): 868–875. https://doi.org/10.1097/MPA.0000000000000355
23.Gerritsen J., Timmerman H.M., Fuentes S., van Minnen L.P., Panneman H., Konstantinov S.R., Rombouts F.M., Gooszen H.G., Akkermans L.M., Smidt H., Rijkers G.T. Correlation between protection against sepsis by probiotic therapy and stimulation of a novel bacterial phylotype. Appl. Environ. Microbiol. 2011; 77 (21): 7749–7756. https://doi.org/10.1128/AEM.05428-11
24.Zhang X.M., Zhang Z.Y., Zhang C.H., Wu J., Wang Y.X., Zhang G.X. Intestinal microbial community differs between acute pancreatitis patients and healthy volunteers. Biomed. Environ. Sci. 2018; 31 (1): 81–86. https://doi.org/10.3967/bes2018.010
25.Van den Berg F.F., van Dalen D., Hyoju S.K., van Santvoort H.C., Besselink M.G., Wiersinga W.J., Zaborina O., Boermeester M.A., Alverdy J. Western-type diet influences mortality from necrotising pancreatitis and demonstrates a central role for butyrate. Gut. 2021; 70 (5): 915–927. https://doi.org/10.1136/gutjnl-2019-320430
26.Zhu Y., He C., Li X., Cai Y., Hu J., Liao Y., Zhao J., Xia L., He W., Liu L., Luo C., Shu X., Cai Q., Chen Y., Lu N. Gut microbiota dysbiosis worsens the severity of acute pancreatitis in patients and mice. J. Gastroenterol. 2019; 54 (4): 347–358. https://doi.org/10.1007/s00535-018-1529-0
27.Zhu Y., Mei Q., Fu Y., Zeng Y. Alteration of gut microbiota in acute pancreatitis and associated therapeutic strategies. Biomed. Pharmacother. 2021; 141: 111850. https://doi.org/10.1016/j.biopha.2021.111850
28.Li Q., Gao S., Ma J., Liu S., Yue Y., Chen L., Li H., Wang X., Li D., Cao Z., Zhao Z., Wang X., Yu Y., Zhang Y., Wang Y. A lower ALC/AMC ratio is associated with poor prognosis of peripheral T-cell lymphoma-not otherwise specified. Leuk. Res. 2018; 73: 5–11. https://doi.org/10.1016/j.leukres.2018.07.020
29.Wang G., Wen J., Xu L., Zhou S., Gong M., Wen P., Xiao X. Effect of enteral nutrition and ecoimmunonutrition on bacterial translocation and cytokine production in patients with severe acute pancreatitis. J. Surg. Res. 2013; 183 (2): 592–597. https://doi.org/10.1016/j.jss.2012.12.010
30.Yu E.W., Gao L., Stastka P., Cheney M.C., Mahabamunuge J., Torres Soto M., Ford C.B., Bryant J.A., Henn M.R., Hohmann E.L. Fecal microbiota transplantation for the improvement of metabolism in obesity: the FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med. 2020; 17 (3): e1003051. https://doi.org/10.1371/journal.pmed.1003051
31.Chen J., Huang C., Wang J., Zhou H., Lu Y., Lou L., Zheng J., Tian L., Wang X., Cao Z., Zeng Y. Dysbiosis of intestinal microbiota and decrease in Paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats. PLoS One. 2017; 12 (4): e0176583. https://doi.org/10.1371/journal.pone.0176583
32.Schietroma M., Pessia B., Carlei F., Mariani P., Sista F., Amicucci G. Intestinal permeability and systemic endotoxemia in patients with acute pancreatitis. Ann. Ital. Chir. 2016; 87: 138–144.
33.Wang L., Jin Y.L., Pei W.L., Li J.C., Zhang R.L., Wang J.J., Lin W. Amuc_1100 pretreatment alleviates acute pancreatitis in a mouse model through regulating gut microbiota and inhibiting inflammatory infiltration. Acta Pharmacol. Sin. 2024; 45 (3): 570–580. https://doi.org/10.1038/s41401-023-01186-4
34.Mc Glone E.R., Bloom S.R. Bile acids and the metabolic syndrome. Ann. Clin. Biochem. 2019; 56 (3): 326–337. https://doi.org/10.1177/0004563218817798
35.Ratajczak W., Ryl A., Mizerski A., Walczakiewicz K., Sipak O., Laszczynska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim. Pol. 2019; 66 (1): 1–12. https://doi.org/10.18388/abp.2018_2648
36.Thomas C., Pellicciari R., Pruzanski M., Auwerx J., Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug. Discov. 2008; 7 (8): 678–693. https://doi.org/10.1038/nrd2619
37.Ye S., Si C., Deng J., Chen X., Kong L., Zhou X., Wang W. Understanding the effects of metabolites on the gut microbiome and severe acute pancreatitis. Biomed. Res. Int. 2021; 2021: 1516855. https://doi.org/10.1155/2021/1516855
38.Liu Q., Yu Z., Tian F., Zhao J., Zhang H., Zhai Q., Chen W. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb. Cell Fact. 2020; 19 (1): 23. https://doi.org/10.1186/s12934-020-1289-4
39.Ma H., Patti M.E. Bile acids, obesity, and the metabolic syndrome. Best Pract. Res. Clin. Gastroenterol. 2014; 28 (4): 573–583. https://doi.org/10.1016/j.bpg.2014.07.004
40.?anic M., Stanimirov B., Pavlovic N., Golocorbin-Kon S., Al-Salami H., Stankov K., Mikov M. Pharmacological applications of bile acids and their derivatives in the treatment of metabolic syndrome. Front. Pharmacol. 2018; 9: 1382. https://doi.org/10.3389/fphar.2018.01382
41.Kuno T., Hirayama-Kurogi M., Ito S., Ohtsuki S. Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Sci. Rep. 2018; 8 (1): 1253. https://doi.org/10.1038/s41598-018-19545-1
42.Duboc H., Rajca S., Rainteau D., Benarous D., Maubert M.A., Quervain E., Thomas G., Barbu V., Humbert L., Despras G., Bridonneau C., Dumetz F., Grill J.P., Masliah J., Beaugerie L., Cosnes J., Chazouilleres O., Poupon R., Wolf C., Mallet J.M., Langella P., Trugnan G., Sokol H., Seksik P. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013; 62 (4): 531–539. https://doi.org/10.1136/gutjnl-2012-302578
43.Liu H., Wang J., He T., Becker S., Zhang G., Li D., Ma X. Butyrate: a double-edged sword for health? Adv. Nutr. 2018; 9 (1): 21–29. https://doi.org/10.1093/advances/nmx009
44.Chang P.V., Hao L., Offermanns S., Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA. 2014; 111 (6): 2247–2252. https://doi.org/10.1073/pnas.1322269111
45.Breyner N.M., Michon C., de Sousa C.S., Vilas Boas P.B., Chain F., Azevedo V.A., Langella P., Chatel J.M. Microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-?B pathway. Front. Microbiol. 2017; 8: 114. https://doi.org/10.3389/fmicb.2017.00114
46.Li G., Lin J., Zhang C., Gao H., Lu H., Gao X., Zhu R., Li Z., Li M., Liu Z. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes. 2021; 13 (1): 1968257. https://doi.org/10.1080/19490976.2021.1968257
47.Gao L., Chong E., Pendharkar S., Hong J., Windsor J.A., Ke L., Li W., Phillips A. The Effects of NLRP3 inflammasome inhibition in experimental acute pancreatitis: a systematic review and meta-analysis. Pancreas. 2022; 51 (1): 13–24. https://doi.org/10.1097/MPA.0000000000001971
48.Sendler M., van den Brandt C., Glaubitz J., Wilden A., Golchert J., Weiss F.U., Homuth G., De Freitas Chama L.L., Mishra N., Mahajan U.M., Bossaller L., Volker U., Broker B.M., Mayerle J., Lerch M.M. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis. Gastroenterology. 2020; 158 (1): 253–269.e14. https://doi.org/10.1053/j.gastro.2019.09.040
49.Cen M.E., Wang F., Su Y., Zhang W.J., Sun B., Wang G. Gastrointestinal microecology: a crucial and potential target in acute pancreatitis. Apoptosis. 2018; 23 (7–8): 377–387. https://doi.org/10.1007/s10495-018-1464-9
50.Rongione A.J., Kusske A.M., Kwan K., Ashley S.W., Reber H.A., McFadden D.W. Interleukin 10 reduces the severity of acute pancreatitis in rats. Gastroenterology. 1997; 112 (3): 960–967. https://doi.org/10.1053/gast.1997.v112.pm9041259
51.Галлямов Э.А., Агапов М.А., Луцевич О.Э., Какоткин В.В. Современные технологии лечения инфицированного панкреонекроза: дифференцированный подход. Анналы хирургической гепатологии. 2020; 25 (1): 69–78. https://doi.org/10.16931/1995-5464.2020169-78
52.Zou X.P., Chen M., Wei W., Cao J., Chen L., Tian M. Effects of enteral immunonutrition on the maintenance of gut barrier function and immune function in pigs with severe acute pancreatitis. JPEN J. Parenter. Enteral. Nutr. 2010; 34 (5): 554–566. https://doi.org/10.1177/0148607110362691
53.Jin Y., Xu H., Chen Y., Wu J., Jin F., Wu Q., Yao X.M. Therapeutic effect of Bifidobacterium combined with early enteral nutrition in the treatment of severe acute pancreatitis: a pilot study. Eur. Rev. Med. Pharmacol. Sci. 2018; 22 (12): 4018–4024. https://doi.org/10.26355/eurrev_201806_15288
54.Mei Q.X., Hu J.H., Huang Z.H., Fan J.J., Huang C.L., Lu Y.Y., Wang X.P., Zeng Y. Pretreatment with chitosan oligosaccharides attenuate experimental severe acute pancreatitis via inhibiting oxidative stress and modulating intestinal homeostasis. Acta Pharmacol. Sin. 2021; 42 (6): 942–953. https://doi.org/10.1038/s41401-020-00581-5
55.Bachmann K., Freitag M., Lohalm H., Tomkotter L., Dupree A., Koops S., Strate T., Izbicki J.R., Mann O. Effects of hydroxyethyl starch and cell-free hemoglobin on microcirculation, tissue oxygenation, and survival in severe acute porcine pancreatitis: results of a randomized experimental trial. Pancreas. 2014; 43 (6): 855–862. https://doi.org/10.1097/MPA.0000000000000146
56.He Y., Wu C., Li J., Li H., Sun Z., Zhang H., de Vos P., Pan L.L., Sun J. Corrigendum: inulin-type fructans modulates pancreatic-gut innate immune responses and gut barrier integrity during experimental acute pancreatitis in a chain length-dependent manner. Front. Immunol. 2018; 9: 812. https://doi.org/10.3389/fimmu.2018.00812

Characteristics of intestinal microbiota in the pathogenesis and clinical course of acute pancreatitis

Sitsskiy A. A., Kakotkin V. V., Agapov M. A.

Aim. To analyze the most promising scientific and practical directions regarding the role of intestinal microbiota and its metabolites in the pathogenesis and clinical course of acute pancreatitis.Materials and methods. The study involved a systematic literature review of the databases PubMed, EMBASE, and Cochrane for the last 20 years. A total of 5 meta-analyses, 234 clinical trials, 127 reviews, and 428 experimental studies were identified. Ultimately, 36 clinical trials, 2 reviews, and 18 experimental studies were selected for the inclusion. The systematic review was carried out in accordance with PRISMA recommendations.Results. The structure of the intestinal microbiota significantly differs in healthy control groups and patients with acute pancreatitis. The microbiota of patients with acute pancreatitis closely correlates with systemic inflammation and intestinal barrier dysfunction. Cases of severe acute pancreatitis revealed an increase in Enterococcus, Proteobacteria, Escherichia, and Shigella, alongside a decrease in overall microbiome diversity and in Bifidobacterium, Prevotella, Faecalibacterium, Blautia, Lachnospiraceae, and Ruminococcaceae. Short-chain fatty acids, the concentration of which in the blood may indicate an increase in intestinal wall permeability, are directly involved in the pathogenesis of acute lung injury associated with acute pancreatitis.Conclusion. Further study into the composition of the intestinal microbiota, its metabolites, and potential modulation strategies in various patient groups obtains high potential as a foundation for new diagnostic, therapeutic, and preventive approaches to acute pancreatitis.

Keywords:
поджелудочная железа, острый панкреатит, кишечная микробиота, метаболиты, предикторы инфицирования, кишечный барьер, pancreas, acute pancreatitis, intestinal microbiota, metabolites, infection predictors, intestinal barrier

Новости   Магазин   Журналы   Контакты   Правила   Доставка   О компании  
ООО Издательский дом ВИДАР-М, 2025