Выход
Вход/Login
 
E-mail
Пароль/Password
Забыли пароль?
Введите E-mail и жмите тут. Пароль будет выслан на указанный адрес
Войти (LogIn)

 

Если вы первый раз здесь, то зарегистрируйтесь

Регистрация/Sign Up
Полное имя (Ф И О)/Full name
E-mail
Телефон/Phone
Зарегистрироваться,
на ваш E-mail будет выслан временный пароль

 

Медицинская литература. Новинки


 

 

 

 

 
вce журналы << Клиническая и экспериментальная тиреоидология << 2016 год << №2 <<
стр.55
отметить
статью

Молекулярно-генетическая структура фолликулярно-клеточного рака щитовидной железы

Якушина В. Д., Лернер Л. В., Казубская Т. П., Кондратьева Т. Т., Субраманиан С. С., Лавров А. В.
Вы можете загрузить полный текст статьи в формате pdf
Якушина Валентина Дмитриевна - к.м.н.,научный сотрудник, ФГБНУ “Медико-генетический научный центр”, vdyakushina@gmail.com,
Лернер Лариса Владимировна - врач-эндокринолог, ООО «ПреМед», info@pre-med.ru,
Казубская Татьяна Павловна - д.м.н., ведущий научный сотрудник, ФГБНУ “Российский онкологический научный центр им. Н.Н. Блохина”,, kazubskaya@yahoo.com,
Кондратьева Татьяна Тихоновна - д.м.н., ведущий научный сотрудник, ФГБНУ “Российский онкологический научный центр им. Н.Н. Блохина”, ttkondr@gmail.com,
Субраманиан Сомасундарам - хирург-онколог, Евразийская федерация онкологии; АНО “Научно-образовательный центр “Евразийская онкологическая программа «ЕАФО»”, drsoma@gmail.com,
Лавров Александр Вячеславович - к.м.н., заведующий лабораторией, ФГБНУ “Медико-генетический научный центр”; ФГБОУ ВО “Российский национальный исследовательский медицинский университет им. Н.И. Пирогова”, avlavrov@yandex.ru,

Рак щитовидной железы лидирует по частоте среди злокачественных новообразований эндокринной системы. В большинстве случаев опухолевые клетки имеют фолликулярно-клеточное происхождение. Диагностика рака основана на проведении цитологического анализа биоптатов узлов щитовидной железы, точность которого не превышает 80%. Это ведет как к ложноположительным, так и ложноотрицательным диагнозам и выбору неправильной тактики лечения. Выявление в биоптатах генетических и эпигенетических маркеров рака щитовидной железы позволит повысить точность диагноза. В данной статье описаны мутации, аберрантное метилирование ДНК и аберрантная экспрессия микроРНК, составляющие основу молекулярно-генетической структуры фолликулярно-клеточного рака щитовидной железы. Мутации, характерные для данного типа рака щитовидной железы, включают точковые, хромосомные перестройки и изменение числа копий генов. Помимо распространенных и хорошо описанных драйверных мутаций генов сигнальных путей МАРK, PI3K/Akt и Wnt, а также генов TP53 иTERT, в данной работе приведены более редкие мутации, выявленные за последние два года. В статье также представлены примеры использования диагностических панелей, основанных на анализе молекулярно-генетических маркеров.

Ключевые слова:
рак щитовидной железы, папиллярный РЩЖ, фолликулярный РЩЖ, мутации, перестройки, метилирование ДНК, микроРНК, KRAS, KRAF, BRAF, thyroid cancer, PTC, FTC, mutations, fusions, DNA methylation, microRNA, KRAS, KRAF, BRAF

Литература:
1.1. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13(3):184-199. doi: 10.1038/nrc3431.
2.2. Nikiforov YE. Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 2011;135(5):569-577. doi: 10.1043/2010-0664-RAIR.1.
3.3. Brito JP, Gionfriddo M, Morris JC, Montori VM. Overdiagnosis of thyroid cancer and Graves’ disease. Thyroid. 2014;24(2): 402-403. doi: 10.1089/thy.2013.0425.
4.4. Кондратьева Т.Т., Павловская А.И., Врублевская Е.А. Морфологическая диагностика узловых образований щитовидной железы // Практическая онкология. - 2007. - Т. 8. - №1. - С.9-17.
5.5. Кондратьева Т.Т. Цитологические аспекты дифференциальной диагностики в области головы и шеи: Автореф. дис. … докт. мед. наук. - Москва; 1993. - 48 с.
6.6. Bongiovanni M, Spitale A, Faquin WC, et al. The Bethesda System for Reporting Thyroid Cytopathology: a meta-analysis. Acta Cytol. 2012;56(4):333-339. doi: 10.1159/000339959.
7.7. Hsiao SJ, Nikiforov YE. Molecular approaches to thyroid cancer diagnosis. Endocr Relat Cancer. 2014;21(5):T301-313. doi: 10.1530/ERC-14-0166.
8.8. Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene. 2013;513(1):1-13. doi: 10.1016/j.gene.2012.10.033.
9.9. Adeniran AJ, Zhu Z, Gandhi M, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas.Am J Surg Pathol. 2006;30(2):216-222.
10.10. Garcia-Rostan G, Camp RL, Herrero A, et al. β-Catenin dysregulation in thyroid neoplasms. Am J Pathol. 2001;158(3):987-996. doi: 10.1016/s0002-9440(10)64045-x.
11.11. Sastre-Perona A, Santisteban P. Role of the Wnt pathway in thyroid cancer. Front Endocrinol (Lausanne). 2012;3. doi: 10.3389/fendo.2012.00031.
12.12. Bounacer A, Wicker R, Caillou B, et al. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene. 1997; 15(11):1263-1273. doi: 10.1038/sj.onc.1200206.
13.13. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell. 2014;159(3):676-690. doi: 10.1016/j.cell.2014.09.050.
14.14. Li F, Chen G, Sheng C, et al. BRAFV600E mutation in papillary thyroid microcarcinoma: a meta-analysis. Endocrine Related Cancer. 2015;22(2):159-168. doi: 10.1530/erc-14-0531.
15.15. Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052-1066. doi: 10.1172/JCI85271.
16.16. Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88(5):2318-2326. doi: 10.1210/jc.2002-021907.
17.17. Liu Z, Hou P, Ji M, et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab. 2008;93(8): 3106-3116. doi: 10.1210/jc.2008-0273.
18.18. Ricarte-Filho JC, Ryder M, Chitale DA, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69(11):4885-4893. doi: 10.1158/0008-5472.CAN-09-0727.
19.19. Dobashi Y, Sugimura H, Sakamoto A, et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol. 1994;3(1):9-14.
20.20. Melo M, Da Rocha AG, Vinagre J, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99(5):E754-E765. doi: 10.1210/jc.2013-3734.
21.21. Kurihara T, Ikeda S, Ishizaki Y, et al. Immunohistochemical and sequencing analyses of the Wnt signaling components in Japanese anaplastic thyroid cancers. Thyroid. 2004;14(12):1020-1029.doi: 10.1089/thy.2004.14.1020.
22.22. Kunstman JW, Juhlin CC, Goh G, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24(8):2318-2329. doi: 10.1093/hmg/ddu749.
23.23. Karunamurthy A, Panebianco F, J Hsiao S, et al. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer. 2016;23(4):295-301. doi: 10.1530/erc-16-0043.
24.24. Kaczmarek-Ryś M, Ziemnicka K, Hryhorowicz ST, et al. The c.470 T > C CHEK2 missense variant increases the risk of differentiated thyroid carcinoma in the Great Poland population. HeredCancer Clin Pract. 2015;13(1). doi: 10.1186/s13053-015-0030-5.
25.25. Siołek M, Cybulski C, Gąsior-Perczak D, et al. CHEK2 mutations and the risk of papillary thyroid cancer. Int J Cancer. 2015;137(3): 548-552. doi: 10.1002/ijc.29426.
26.26. Nikiforova MN, Wald AI, Roy S, et al. Targeted Next-Generation Sequencing Panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocr Metab. 2013;98(11):E1852-E1860.doi: 10.1210/jc.2013-2292.
27.27. Espinosa A, Gilbert J, Fagin J. RET C634 mutations in thyroid cancer [Internet]. My cancer genome. Available on URL: https://www.mycancergenome.org/content/disease/thyroid-cancer/ret/126/ (Updated October 20, 2014).
28.28. Espinosa A, Gilbert J, Fagin J. RET M918T mutations in thyroid cancer [Internet]. My cancer genome. Available on URL: https://www.mycancergenome.org/content/disease/thyroid-cancer/ret/128/ (Updated October 20, 2014).
29.29. Menicali E, Moretti S, Voce P, et al. Intracellular signal transduction and modification of the tumor microenvironment induced by RET/PTCs in papillary thyroid carcinoma. Front Endocrinol(Lausanne). 2012;3. doi: 10.3389/fendo.2012.00067.
30.30. Marotta V, Guerra A, Sapio MR, Vitale M. RET/PTC rearrangement in benign and malignant thyroid diseases: a clinical standpoint. Eur J Endocrinol. 2011;165(4):499-507. doi: 10.1530/eje-11-0499.
31.31. Ciampi R, Nikiforov YE. Minireview: RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology. 2007;148(3):936-941. doi: 10.1210/en.2006-0921.
32.32. Mochizuki K, Kondo T, Nakazawa T, et al. RET rearrangements and BRAF mutation in undifferentiated thyroid carcinomas having papillary carcinoma components. Histopathology. 2010;57(3): 444-450. doi: 10.1111/j.1365-2559.2010.03646.x.
33.33. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell. 1985;42(2): 581-588. doi: 10.1016/0092-8674(85)90115-1.
34.34. Dwight T, Thoppe SR, Foukakis T, et al. Involvement of the PAX8/peroxisome proliferator-activated receptor γ rearrangement in follicular thyroid tumors. J Clin Endocr Metab. 2003;88(9):4440-4445. doi: 10.1210/jc.2002-021690.
35.35. Marques AR, Espadinha C, Frias MJ, et al. Underexpression of peroxisome proliferator-activated receptor (PPAR)γ in PAX8/PPARγ-negative thyroid tumours. Br J Cancer. 2004. doi: 10.1038/sj.bjc.6601989.
36.36. Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115(1):94-101. doi: 10.1172/jci23237.
37.37. Leeman-Neill RJ, Kelly LM, Liu P, et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer. 2014;120(6):799-807. doi: 10.1002/cncr.28484.
38.38. Forbes SA, Beare D, Gunasekaran P, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2014;43(D1):D805-D811. doi: 10.1093/nar/gku1075.
39.39. Kjellman P, Lagercrantz S, Höög A, et al. Gain of 1q and loss of 9q21.3-q32 are associated with a less favorable prognosis in papillary thyroid carcinoma. Genes Chromosomes Cancer. 2001; 32(1):43-49. doi: 10.1002/gcc.1165.
40.40. Liu Y, Cope L, Sun W, et al. DNA copy number variations characterize benign and malignant thyroid tumors. J Clin Endocr Metab. 2013;98(3):E558-E566. doi: 10.1210/jc.2012-3113.
41.41. Brehar AC, Brehar FM, Bulgar AC, Dumitrache C. Genetic and epigenetic alterations in differentiated thyroid carcinoma. J Med Life. 2013;6(4):403-408. PMC4034295.
42.42. Faam B, Ghaffari MA, Ghadiri A, Azizi F. Epigenetic modifications in human thyroid cancer. Biomed Rep. 2015;3(1):3-8. doi: 10.3892/br.2014.375.
43.43. Klutstein M, Nejman D, Greenfield R, Cedar H. DNA methylation in cancer and aging. Cancer Res. 2016;76(12):3446-3450. doi: 10.1158/0008-5472.CAN-15-3278.
44.44. Hou P, Liu D, Xing M. Genome-wide alterations in gene methylation by the BRAF V600E mutation in papillary thyroid cancer cells. Endocr Relat Cancer. 2011;18(6):687-697. doi: 10.1530/ERC-11-0212.
45.45. Ellis RJ, Wang Y, Stevenson HS, et al. Genome-wide methylation patterns in papillary thyroid cancer are distinct based on histological subtype and tumor genotype. J Clin Endocrinol Metab. 2014; 99(2):E329-337. doi: 10.1210/jc.2013-2749.
46.46. Hou P, Ji M, Xing M. Association of PTEN gene methylation with genetic alterations in the phosphatidylinositol 3-kinase/AKT signaling pathway in thyroid tumors. Cancer. 2008;113(9):2440-2447. doi: 10.1002/cncr.23869.
47.47. Schagdarsurengin U, Gimm O, Dralle H, et al. CpG island methylation of tumor-related promoters occurs preferentially in undifferentiated carcinoma. Thyroid. 2006;16(7):633-642. doi: 10.1089/thy.2006.16.633.
48.48. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4. doi: 10.7554/eLife.05005.
49.49. Nikiforova MN, Chiosea SI, Nikiforov YE. MicroRNA expression profiles in thyroid tumors. Endocr Pathol. 2009;20(2):85-91. doi: 10.1007/s12022-009-9069-z.
50.50. Pallante P, Visone R, Ferracin M, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006;13(2):497-508. doi: 10.1677/erc.1.01209.
51.51. Visone R, Russo L, Pallante P, et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr RelatCancer. 2007;14(3):791-798. doi: 10.1677/ERC-07-0129.
52.52. Jazdzewski K, Boguslawska J, Jendrzejewski J, et al. Thyroid hormone receptor beta (THRB) is a major target gene for microRNAs deregulated in papillary thyroid carcinoma (PTC). J ClinEndocrinol Metab. 2011;96(3):E546-553. doi: 10.1210/jc.2010-1594.
53.53. Nikiforov YE, Carty SE, Chiosea SI, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120(23):3627-3634. doi: 10.1002/cncr.29038.
54.54. Yip L, Wharry LI, Armstrong MJ, et al. A clinical algorithm for fine-needle aspiration molecular testing effectively guides the appropriate extent of initial thyroidectomy. Ann Surg. 2014;260(1):163-168. doi: 10.1097/SLA.0000000000000215.
55.55. Monaco SE, Pantanowitz L, Khalbuss WE, et al. Cytomorphological and molecular genetic findings in pediatric thyroid fine-needle aspiration. Cancer Cytopathol. 2012;120(5):342-350. doi: 10.1002/cncy.21199.
56.56. Buryk MA, Monaco SE, Witchel SF, et al. Preoperative cytology with molecular analysis to help guide surgery for pediatric thyroid nodules. Int J Pediatr Otorhinolaryngol. 2013;77(10):1697-1700.doi: 10.1016/j.ijporl.2013.07.029.
57.57. Gupta N, Dasyam AK, Carty SE, et al. RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicular-pattern cancers. J Clin Endocrinol Metab. 2013; 98(5):E914-922. doi: 10.1210/jc.2012-3396.
58.58. Puzziello A, Guerra A, Murino A, et al. Benign thyroid nodules with RAS mutation grow faster. Clin Endocrinol (Oxf). 2016;84(5): 736-740. doi: 10.1111/cen.12875.
59.59. Keutgen XM, Filicori F, Crowley MJ, et al. A panel of four miRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration. Clin Cancer Res.2012;18(7):2032-2038. doi: 10.1158/1078-0432.CCR-11-2487.
60.60. Benjamin H, Schnitzer-Perlman T, Shtabsky A, et al. Analytical validity of a microRNA-based assay for diagnosing indeterminate thyroid FNA smears from routinely prepared cytology slides.Cancer Cytopathol. 2016. doi: 10.1002/cncy.21731

Molecular genetics of follicular cell thyroid carcinoma

Yakushina V. D., Lerner L. V., Kazubskaya T. P., Kondrat''ieva T. T., Subramanian S. -., Lavrov A. V.

Thyroid cancer is the most frequent endocrine malignancy. In the most cases thyroid cancer arises from follicular cells. Diagnosis of the cancer is based on the cytological analysis of fine needle aspiration biopsy of thyroid nodes. But the accuracy of the cytological diagnosis is about 80% that leads to the false positive and false negative cases and wrong strategy of treatment. Identification of genetic and epigenetic markers in the biopsies will allow to improve diagnostic accuracy. This article describes mutations, aberrant DNA methylation and abnormal microRNA expression constituting the core of molecular genetics of follicular cell thyroid cancer. The mutations given in the article includes point mutations, fusions and copy number variation. Besides frequent and well described driver mutations in genes of МАРK, PI3K/Akt and Wnt signaling pathways, as well as TP53 and TERT genes, we introduce here less frequent mutations appeared in the literature during the past two years. In addition the article contains examples of diagnostic panels applying these markers.

Keywords:
рак щитовидной железы, папиллярный РЩЖ, фолликулярный РЩЖ, мутации, перестройки, метилирование ДНК, микроРНК, KRAS, KRAF, BRAF, thyroid cancer, PTC, FTC, mutations, fusions, DNA methylation, microRNA, KRAS, KRAF, BRAF

Новости   Магазин   Журналы   Контакты   Правила   Доставка   О компании  
ООО Издательский дом ВИДАР-М, 2016