Новости | Магазин | Журналы | Контакты | Правила | Доставка | |
Вход Регистрация |
Изучался метаболизм глюкозы головного мозга методом позитронноэмиссионной томографии (ПЭТ) в группах больных дистонией и эссенциальным тремором. История изучения дистонии методом ПЭТ представлена в виде таблицы, в которую включены исследования больных с DYT1 и DYT6мутацией и без мутации, носителей DYT-1 и DYT-6 без признаков заболевания, в покое, при выполнении двигательных актов, при обдумывании двигательных актов, при освоении последовательности движений, при этом изучались метаболизм глюкозы, кислорода, региональный мозговой кровоток, пресинаптические и постсинаптические рецепторы дофаминергических проводящих путей.
Ключевые слова:
позитронно-эмиссионная томография, дистония, эссенциальный тремор, метаболизм кислорода, глюкозы, мозговой кровоток, сродство дофаминовых рецепторов, DYT1 и DYT6мутации.
Литература:
1. Brooks D.J. PET of subcortical degeneration and dystonia. Semin. Neurol. 1989; 9: 351–359.
2. Carbon M., Eidelberg D. Abnormal structure – function
relationships in hereditary dystonia. Neuroscience 2009;
164(1): 220–229.
3. Van Eimeren Th., Siebner H. An update of functional neuroimaging of parkinsonism and dystonia. Curr. Opin.
Neurol. 2006; 19: 412–419.
4. Carbon M., Trost M., Ghilardi M. F. et. al. Abnormal brain
networks in primary torsion dystonia. Adv. Neurol. 2004;
94: 155–161.
5. Karbe H., Holthoff V.A., Rudolf J. et al. Positron emission
tomography demonstrates frontal cortex and basal ganglia hypometabolism in dystonia. Neurology 1992; 42:
1540–1544.
6. Беленький В.В., Головкин В.И., Королева Е.М. и др.
Обмен катехоламинов при торсионной дистонии. Нейрохимия 2010; 1: 74–78.
7. Jenkins I.H., Bain P.G., Colebatch J.G. et al. A positron
emission tomography study of essential tremor: evidence
for overactivity of cerebellar connections. Ann. Neurol.
1993; 34(1): 82–90.
8. Wills A.J., Jenkins I.H., Thomson P.D. et al. Red nuclear
and cerebellar but no olivary activation associated with
essential tremor: a positron emission tomographic study.
Ann. Neurol. 1994; 36(4): 636–642.
9. Wills A.J., Jenkins I.H., Thompson P.D. et al. A positron
emission tomography study of cerebral activation associated with essential and writing tremor. Arch. Neurol. 1995;
52(3): 299–305.
10. Colebatch J.G., Findley L.J., Frackowiak R.S J. et al.
Preliminary report: activation of the cerebellum in essential tremor. Lancet 1990; 336: 1028–1030
11. Martin W.R.W. Positron emission tomography in movement disorders. Can. J. Neurol. Sci. 1985; 12: 6–10.
12. Junck L., Gilman S., Hichwa R.D. PET studies of local
cerebral glucose metabolism in idiopathic torsion dystonia. Neurology 1986; 36(1): 182.
13. Stoessl J., Martin W.R.W., Clark C. et al. PET studies of
cerebral glucose metabolism in idiopathic torticollis.
Neurology 1986; 36: 653–657.
14. Fross R.D., Martin W.R.W., Li D. et al. Lesions of the putamen, their relevance to dystonia. Neurology 1987; 37:
1125–1129.
15. Chase T.N., Tamminga C.A., Burrows H. Positron emission
tomographic studies of regional cerebral glucose metabolism in idiopathic dystonia. Adv. Neurol. 1988; 50:
237–241.
16. Gilman S., Junck L., Young A.B. Cerebral metabolic activity in idiopathic dystonia studied with positron emission
tomography. Adv. Neurol. 1988; 50: 231–236.
17. Lang A.E., Garnet E.S., Firnau G. et al. Positron tomography in dystonia. Adv. Neurol. 1988; 50: 249–253.
18. Martin W.R.W., Stoessl A.J., Palmer M. et al. Pet scanning
in dystonia. Adv. Neurol. 1988; 50: 223–229.
19. Eidelberg D. Regional metabolic covariation in ITD with
18FDG PET. Mov. Disord. 1992; 2: 297.
20. Otsuka M., Ichiya Y., Shima F. et al. Increased striatal 18
dopa uptake and normal glucose metabolism in idiopathic
dystonia syndrome. J. Neurol. Sci. 1992; 111: 145–149.
21. Lew M. 18FDG PET in spasmodic dysphonia. Mov. Disord.
1993; 8: 413.
22. Moeller R., Takikawa S., Dhawan V. et al. Brain metabolic
topography in idiopathic torsion dystonia. Neurology
1993; 43(1): A 408.
23. Eidelberg D., Moeller J.R., Ishikawa T. et al. The metabolic topography of idiopathic torsion dystonia. Brain 1995;
118: 1473–1484.
24. Galardi G., Perani D., Grassi F. et al. Basal ganglia and thalamocortical hypermetabolism in patients with spasmodic
torticollis. Acta Neurologica Scand. 1996; 94:172–176.
25. MagyarLehmann S., Antonini A., Roelcke U. et al.
Cerebral glucose metabolism in patients with smasmodic
torticollis. Mov. Disord. 1997; 12:704–708.
26. Eidelberg D., Moeller J. R., Antonioni A. et al. Functional
brain network in DYT 1 dystonia. Ann. Neurol. 1998; 44:
303–312.
27. Mazziotta J.C., Hutchinson M., Fife T. D. et al. Advanced
neuroimaging methods in the study of movement disorders: dystonia and blepharospasm. Adv. Neurol. 1998; 78:
153–160.
28. Hutchinson M., Nakamura T., Moeller J.R. et al. The metabolic topography of essential blepharospasm: a focal dystonia with general implications. Neurology 2000; 55:
673–677.
29. Trost M., Carbon M., Edwards C. et al. Primary dystonia: is
abnormal functional brain architecture linked to genotype? Ann. Neurol. 2002; 52: 853–856.
30. Carbon M., Argelan M., Flanagan T. et al. Abnormal brain
activation during sequential movements in DYT 1 dystonia. Neurology 2008; 70(A): 432.
31. Perlmutter J.S., Raichle M.E. et al. Pure hemidystonia with
basal ganglion abnormalities on positron emission tomography. Ann. Neurol 1984; 15: 228–233.
32. Tempel L.W., Perlmutter J.S., Louis St. Abnormal cerebral
blood flow response to vibrotactile stimulation in dystonics. Neurology 1988; 38(1): 131.
33. Perlmutter J. S., Raihle M. E. Regional cerebral blood flow
in dystonia: an exploratory study. Adv. Neurol. 1988; 50:
255–264.
34. Tempel L.W., Perlmutter J.S. Abnormal vibration – induced
cerebral blood flow responses in idiopathic dystonia. Brain
1990; 113: 691–707.
In the research glucose metabolism in brain was studied by PET method in patients with dystonia and essential tremor. We also review the history of PET studies in dystonia and present the data of researchers in table, including investigations of manifesting and non – manifesting carriers of DYT1 and DYT6 mutation, and patients without these mutations, in rest and during motor performance, in sequence learning and in imaging of movement by means of glucose and oxygen metabolism, cerebral blood flow and dopaminergic neurotransmission.
Keywords:
PET, dystonia, oxygen and glucose metabolism, cerebral blood flow, dopamine receptor binding, DYT1 and DYT6 mutations.