Новости | Магазин | Журналы | Контакты | Правила | Доставка | |
Вход Регистрация |
Компьютерная томография (КТ) является эффективным методом контроля проведения малоинвазивный чрескожных вмешательств. Наиболее часто для лучевого мониторинга используются последовательный режим КТ-сканирования и КТ-флюороскопия. Альтернативным и относительно новым способом контроля выполнения интервенционных процедур является применение роботизированных КТ-совместимых устройств. Цель исследования: продемонстрировать удобство, эффективность и безопасность роботизированной пункции как способа выполнения интервенционных процедур под КТ-контролем. Материал и методы. Операции проводились в условиях КТ-операционной ФГБУ “НМИЦ онкологии имени Н.Н. Петрова” Минздрава России с использованием компьютерного томографа Philips Ingenuity и роботизированной приставки Maxio Perfint. В статье представлены клинические наблюдения биопсии опухоли надпочечника и криоабляции опухоли почки. При выполнении криоабляции применялась Медицинская криотерапевтическая система. Результаты. Использование роботизированного устройства позволило выполнить соответствующие манипуляции. Заключение. Роботизированная приставка Maxio представляется перспективным техническим решением для КТ-контролируемых чрескожных интервенций. Оценка лечебной эффективности использования роботизированной приставки в сравнении с традиционными подходами КТ-контроля при миниинвазивных вмешательствах требует дальнейшего изучения и анализа на более объемной выборке в более длительные сроки наблюдения.
Ключевые слова:
интервенции под КТ-контролем, миниинвазивные чрескожные вмешательства в онкологии, КТ-совместимые роботизированные системы, робот-ассистированные операции под КТ-контролем, CT-guided interventions, mini-invasive percutaneous procedures in oncology, CT-compatible robotic systems, CT-guided robotic-assisted interventions
Литература:
1.Katada K., Kato R., Anno H., Ogura Y., Koga S., Ida Y., Sato M., Nonomura K. Guidance with real-time CT fluoroscopy: early clinical experience. Radiology. 1996; 200: 851-856. http://doi.org/10.1148/radiology.200.3.8756943.
2.Goldberg S.N., Keogan M.T., Raptopoulos V. Percutaneous CT-guided biopsy: improved confirmation of sampling site and needle positioning using a multistep technique at CT fluoroscopy. J. Comput. Assist. Tomogr. 2000; 24: 264-266.
3.Leng S. Radiation Dose in CT-guided Interventional Procedures: Establishing a Benchmark. Radilogy. 2018; 289 (1): 158-159. http://doi.org/10.1148/radiol.2018181245
4.Bissoli E., Bison L., Gioulis E., Chisena C., Fabbris R. Multislice CT fluoroscopy: technical principles, clinical applications and dosimetry. Radiol. Med. 2003; 106 (3): 201-212.
5.Carlson S.K., Bender C.E., Classic K.L., Zink F.E., Quam J.P., Ward E.M., Oberg A.L. Benefits and safety of CT fluoroscopy in interventional radiologic procedures. Radiology. 2001; 219 (2): 515-520. http://doi.org/10.1148/radiology.219.2.r01ma41515.
6.Kimura T., Naka N., Minato Y., Inoue Y., Kimura T., Mawatari H., Yamauchi S., Akira M., Kawahara M. Oblique approach of computed tomography guided needle biopsy using multiplanar reconstruction image by multidetectorrow CT in lung cancer. Eur. J. Radiol. 2004; 52: 206-211. http://doi.org/10.1016/j.ejrad.2004.01.007.
7.Gupta S., Nguyen H.L., Morello F.A. Jr., Ahrar K., Wallace M.J., Madoff D.C., Murthy R., Hicks M.E. Various approaches for CT-guided percutaneous biopsy of deep pelvic lesions: anatomic and technical considerations. Radiographics. 2004; 24: 175-189. http://doi.org/10.1148/rg.241035063.
8.Cleary K., Melzer A., Watson V., Kronreif G., Stoianovici D. Interventional robotic systems: applications and technology state-of-the-art. Minim. Invasive Ther. Allied. Technol. 2006; 15: 101-113. http://doi.org/10.1080/13645700600674179.
9.Kettenbach J., Kara L., Toporek G., Fuerst M., Kronreif G. A robotic needle-positioning and guidance system for CTguided puncture: Ex vivo results. Minim. Invasive Ther. Allied. Technol. 2014; 23: 271-278. http://doi.org/10.3109/13645706.2014.928641.
10.Charles E. Ray Jr. Interventional radiology and the care of the oncology patient. Am. Fam. Physician. 2000; 62 (1): 95-102.
11.Ellis L.M., Curley S.A., Tanabe K.K. Radiofrequency Ablation for Cancer: Current Indications, Techniques and Outcomes. New York: Springer. 2004. 307 p.
12.Carberry G.A., Lubner M.G., Wells S.A., Hinshaw J.L. Percutaneous biopsy in the abdomen and pelvis: a stepby-step approach. Abdom. Radiol. 2016; 41 (4): 720-742. http://doi.org/10.1007/s00261-016-0667-1.
13.Sheafor D.H., Paulson E.K., Kliewer M.A., DeLong D.M., Nelson R.C. Comparison of sonographic and CT guidance techniques: does CT fluoroscopy decrease procedure. Am. J. Roentgenol. 2000; 174 (4): 939-942. http://doi.org/10.2214/ajr.174.4.1740939.
14.Spiegel E.A., Wycis H.T., Marks M., Lee A.J. Stereotaxic apparatus for operations on the human brain. Science. 1947; 106 (2754): 349-350. http://doi.org/10.1126/science.106.2754.349.
15.Kwoh Y.S., Hou J., Jonckheere E.A., Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans. Biomed. Eng. 1988; 35 (2): 153-160. http://doi.org/10.1109/10.1354.
16.Fichtinger G., Burdette E.C., Tanacs A., Patriciu A., Mazilu D., Whitcomb L.L., Stoianovici D. Robotically assisted prostate brachytherapy with transrectal ultrasound guidance - phantom experiments. Brachytherapy. 2006; 5 (1): 14-26. http://doi.org/10.1016/j.brachy.2005.10.003.
17.Muntener M., Patriciu A., Petrisor D., Mazilu D., Bagga H., Kavoussi L., Cleary K., Stoianovici D. Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement. Urology. 2006; 68 (6): 1313-1317. http://doi.org/10.1016/j.urology.2006.08.1089.
18.Kettenbach J., Kronreif G. Robotic systems for percutaneous needle-guided interventions. Minim. Invasive Ther. Allied. Technol. 2015; 24 (1): 45-53. http://doi.org/10.3109/13645706.2014.977299.
19.Bale R.J., Lottersberger C., Vogele M., Prassl A., Czermak B., Dessl A., Sweeney R.A., Waldenberger P., Jaschke W. A novel vacuum device for extremity immobilisation during digital angiography: preliminary clinical experiences. Eur. Radiol. 2002; 12: 2890-2894. http://doi.org/10.1007/s00330-002-1492-1.
20.Widmann G., Schullian P., Haidu M., Wiedermann F.J., Bale R. Respiratory motion control for stereotactic and robotic liver interventions. Int. J. Med. Robot. 2010; 6: 343-349. http://doi.org/10.1002/rcs.343.
Computed tomography is an effective method of monitoring of percutaneous interventions. Conventional CT guidance and CT-fluoroscopy are used most frequently for procedure monitoring. Image-guided robotic needle positioning is an alternative and relatively modern approach for interventional procedures. Purpose: to demonstrate convenience, effectiveness and safety of robotic system for CT-guided interventions. Materials and methods. CT-guided percutaneous interventions were performed in FSBI “N.N. Petrov NMRC of Oncology” Ministry of Healthcare of The Russian Federation using the Philips Ingenuity CT scanner and Maxio Perfint robotic system. This article presents clinical observations of adrenal tumor biopsy and cryoablation of a renal cell carcinoma. For cryoablation the Medical Cryotherapeutic System was used. Results. The robotic system for CT-guided interventions allowed to perform corresponding surgical procedures. Conclusions. The Maxio robotic console seems to be a promising technical solution for CT-guided interventions. Evaluation of the effectiveness of the robotic and traditional approaches of CT control in percutaneous procedures requires further investigations and analysis on larger data sample in longer periods of observation.
Keywords:
интервенции под КТ-контролем, миниинвазивные чрескожные вмешательства в онкологии, КТ-совместимые роботизированные системы, робот-ассистированные операции под КТ-контролем, CT-guided interventions, mini-invasive percutaneous procedures in oncology, CT-compatible robotic systems, CT-guided robotic-assisted interventions