Новости | Магазин | Журналы | Контакты | Правила | Доставка | |
Вход Регистрация |
Настоящая статья содержит обзор основных литературных данных, посвященных биохимическим основам и клиническому применению позитронной эмиссионной томографии - одной из перспективных технологий лучевой визуализации в онкологии. В заключительной части подробно рассмотрены особенности биокинетики радиофармацевтических препаратов, отражающих пролиферативную активность злокачественных клеток и степень гипоксии в опухолевом очаге. Представлены результаты исследований, посвященных оценке их эффективности, основные показания к их применению, особенности подготовки к исследованию, а также перспективные научные разработки в данной отрасли.
Ключевые слова:
ПЭТ/КТ, радиофармпрепараты, ФЛТ, FMAU, тимидин, гипоксия, FMISO, FAZA, HX4, ATSM, PET/CT, radiopharmaceuticals, FLT, FMAU, hypoxia, FMISO, FAZA, HX4, ATSM
Литература:
1.Shields A.F., Grierson J.R., Dohmen B.M., Machulla H.J., Stayanoff J.C., Lawhorn-Crews J.M., Obradovich J.E., Muzik O., Mangner T.J. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med. 1998; 4: 1334-1336. http://doi.org/10.1038/3337
2.Barwick T., Bencherif B., Mountz J.M., Avril N. Molecular PET and PET/CT imaging of tumour cell proliferation using F-18 fluoro-L-thymidine: a comprehensive evaluation. Nuclear Med. Communications. 2009; 30 (12): 908-917. http://doi.org/10.1097/MNM.0b013e32832ee93b
3.Jensen M.M., Kjaer A. Monitoring of anti-cancer treatment with 18F-FDG and 18F-FLT PET: a comprehensive review of pre-clinical studies. Am. J. Nucl. Med. Mol. Imaging. 2015; 5 (5): 431-456.
4.Belt J.A., Marina N.M., Phelps D.A., Crawford C.R. Nucleoside transport in normal and neoplastic cells. Adv. Enzyme Regul. 1993; 33: 235-252.
5.Fanti S., Farsad M., Mansi L. PET-CT Beyond FDG. A Quick Guide to Image Interpretation. Berlin; Heidelberg: Springer-Verlag, 2010.
6.Pauleit D., Floeth F., Herzog H., Hamacher K., Tellmann L., Muller H.W., Coenen H.H., Langen K.-J. Whole-body distribution and dosimetry of O-(2-[18F]fluoroethyl)-ltyrosine. Eur. J. Nucl. Med. Mol. Imaging. 2003; 30: 519-524. http://doi.org/10.1007/s00259-003-1118-0
7.Buck A.K., Hermann K., Shen C., Dechow T., Schwaiger M., Wester H.J. Molecular imaging of proliferation in Vivo: positron emission tomography with [18F]fluorothymidine. Methods. 2009; 48 (2): 205-215. http://doi.org/10.1016/j.ymeth.2009.03.009
8.Soloviev D., Lewis D., Honess D., Aboagye E. [(18)F]FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur. J. Cancer. 2012; 48: 416-424. http://doi.org/10.1016/j.ejca.2011.11.035
9.Barwick T., Bencherif B., Mountz J.M., Avril N. Molecular PET and PET/CT imaging of tumour cell proliferation using F-18-fluoro-L-thymidine: a comprehensive evaluation. Nucl. Med. Communications. 2009; 30: 908-917. http://doi.org/10.1097/MNM.0b013e32832ee93b
10.Jensen M.M., Kjaer A. Monitoring of anti-cancer treatment with (18)F-FDG and (18)F-FLT PET: a comprehensive review of pre-clinical studies. Am. J. Nucl. Med. Mol. Imaging. 2015; 5 (5): 431-456.
11.Miyake K., Shinomiya A., Okada M., Hatakeyama T., Kawai N., Tamiya T. Usefulness of FDG, MET and FLT-PET studies for the management of human gliomas. J. Biomed. Biotechnol. 2012. 205818. http://doi.org/10.1155/2012/205818
12.Glaudemans A.W., Enting R.H., Heesters M.A., Dierckx R.A., van Rheenen R.W., Walenkamp A M., Slart R.H. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur. J. Nucl. Med. Mol. Imaging. 2012. http://doi.org/10.1007/s00259-012-2295-5
13.Alauddin M.M. Journey of 2''-deoxy-2''-fluoro-5-methyl-1-?-D-arabinofuranosyluracil (FMAU): from Antiviral Drug to PET Imaging Agent. Curr. Med. Chem. 2018; 25 (16): 1867-1878. http://doi.org/10.2174/0929867325666171129125217
14.Sun H., Sloan A., Mangner T.J., Vaishampayan U., Muzik O., Collins J.M., Douglas K., Shields A.F. Imaging DNA synthesis with [18F]FMAU and positron emission tomography in patients with cancer. Eur. J. Nucl. Med. Mol. Imaging. 2005; 32 (1): 15-22.
15.Jadvar H., Chen K., Ukimura O. Targeted Prostate Gland Biopsy With Combined Transrectal Ultrasound, mpMRI, and 18F-FMAU PET/CT. Clin. Nucl. Med. 2015; 40 (8): e426-e428. http://doi.org/10.1097/rlu.0000000000000814
16.Varghese B., Velez E., Desai B., Jadvar H. Incidental Detection of Meningioma by 18F-FMAU PET/CT in a Patient With Suspected Prostate Cancer. Clin. Nucl. Med. 2018; 43 (7): e245-e246. http://doi.org/10.1097/RLU.0000000000002123
17.Клиническое исследование “ПЭТ/КТ с 18F-FMAU в диагностике и характеристике рака предстательной железы”. Доступно по: https://clinicaltrials.gov/ct2/show/NCT02809690 Ссылка активна на 06.09.2019г.
18.Semenza G.L., Jiang B.H., Leung S.W. et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 1996; 271 (51): 32529-32537. http://doi.org/10.1074/jbc.271.51.32529
19.Semenza G.L., Roth P.H., Fang H.M., Wang G.L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 1994; 269 (38): 23757-23763.
20.Lopci E., Grassi I., Chiti A., Nanni C., Cicoria G., Toschi L., Fonti C., Lodi F., Mattioli S., Fanti S. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am. J. Nucl. Med. Mol. Imaging. 2014; 4 (4): 365-384.
21.Li F., Jorgensen J.T., Madsen J., Kjaer A. Pharmacokinetic analysis of 64Cu-ATSM dynamic PET in human xenograft tumors in mice. Diagnostics. 2015; 5 (2): 96-112. http://doi.org/10.3390/diagnostics5020096
22.Thorwarth D., Wack L.-J., Monnich D. Hypoxia PET imaging techniques: data acquisition and analysis. Clin. Transl. Imaging. 2017; 5: 489-496. https://doi.org/10.1007/s40336-017-0250-y
23.Chen L., Zhang Z., Kolb H.C., Walsh J.C., Zhang J., Guan Y. 18F-HX4 hypoxia imaging with PET/CT in head and neck cancer: a comparison with 18F-FMISO. Nucl. Med. Commun. 2012; 33 (10): 1096-1102. https://doi.org/10.1097/MNM.0b013e3283571016
24.Shaughnessy F., Mariotti E., Shaw K.P., Eykyn T.R., Blower P.J., Siow R., Southworth R. Modification of intracellular glutathione status does not change the cardiac trapping of 64Cu (ATSM). EJNMMI Research. 2014; 4: 40. https://doi.org/10.1186/s13550-014-0040-8
25.Mortensen L.S., Johansen J., Kallehauge J., Primdahl H., Busk M., Lassen P., Alsner J., Sorensen B.S., Toustrup K., Jakobsen S., Petersen J., Petersen H., Theil J., Nordsmark M., Overgaard J. FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother Oncol. 2012; 105: 14-20. https://doi.org/10.1016/j.radonc.2012.09.015
26.Kikuchi M., Yamane T., Shinohara S., Fujiwara K., Hori S.Y., Tona Y., Yamazaki H., Naito Y., Senda M. 18F-fluoromisonidazole positron emission tomography before treatment is a predictor of radiotherapy outcome and survival prognosis in patients with head and neck squamous cell carcinoma. Ann. Nucl. Med. 2011; 25 (9): 625-633. https://doi.org/10.1007/s12149-011-0508-9
27.Tateichi K., Tateishi U., Sato M., Yamanaka S., Kanno H., Murata H., Inoue T., Kawahara N. Application of 62Cudiacetyl-bis(N4-methylthiosemicarbazone) PET imaging to predict highly malignant tumor grades and hypoxiainducible factor-1a expression in patients with glioma. Am. J. Neuroradiol. 2013; 34: 92-99. https://doi.org/10.3174/ajnr.A3159
28.Grosu A.L., Souvatzoglou M., Roper B., Dobritz M., Wieden mann N., Jacob V., Wester H.J., Reischl G., Machulla H.J., Schwaiger M., Molls M., Piert M. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007; 69: 541-551.
29.Melsens E., De Vlieghere E., Descamps B., Vanhove C., Kersemans K., De Vos F., Goethals I., Brans B., De Wever O., Ceelen W., Pattyn P. Hypoxia imaging with 18F-FAZA PET/CT predicts radiotherapy response in esophageal adenocarcinoma xenografts. Radiat. Oncol. 2018; 13 (1): 39. https://doi.org/10.1186/s13014-018-0984-3
This article provides an overview of the main literature data of biochemical basics and the clinical application of positron emission tomography, one of the promising technologies of radiation imaging in oncology. In the final part, the biokinetics of radiopharmaceuticals that display the proliferative activity of malignant cells and the degree of hypoxia in the tumor focus are examined in detail. The results of studies devoted to assessing their effectiveness, the main indications for their use, the features of preparation for the study, as well as promising scientific developments in this industry are presented.
Keywords:
ПЭТ/КТ, радиофармпрепараты, ФЛТ, FMAU, тимидин, гипоксия, FMISO, FAZA, HX4, ATSM, PET/CT, radiopharmaceuticals, FLT, FMAU, hypoxia, FMISO, FAZA, HX4, ATSM