Выход
Вход/Login
 
E-mail
Пароль/Password
Забыли пароль?
Введите E-mail и жмите тут. Пароль будет выслан на указанный адрес
Войти (LogIn)

 

Если вы первый раз здесь, то зарегистрируйтесь

Регистрация/Sign Up
Полное имя (Ф И О)/Full name
E-mail
Повторите E-mail
Телефон/Phone
Зарегистрироваться,
на ваш E-mail будет выслан временный пароль

Нажимая кнопку Зарегистрироваться, вы соглашаетесь с Правилами сайта и Политикой Конфиденциальности http://vidar.ru/rules.asp

 

Медицинская литература. Новинки


 

 

 

 

 

 
вce журналы << Поиск по всем журналам: э << очистить поиск << Медицинская визуализация << 2021 год << №4 <<
стр.134
отметить
статью

Количественная компьютерная томография, современные данные. Обзор

Петряйкин А. В., Скрипникова И. А.
Вы можете загрузить полный текст статьи в формате pdf
Петряйкин Алексей Владимирович - канд. мед. наук, ведущий научный сотрудник отдела инновационных технологий ГБУЗ “Научнопрактический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы”, ГБУЗ “Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы”, alexeypetraikin@gmail.com, 109029 Москва, Средняя Калитниковская ул., д. 28, стр. 1
Скрипникова Ирина Анатольевна - доктор мед. наук, профессор, руководитель отдела профилактики остеопороза ФГБУ “Национальный медицинский исследовательский центр терапии и профилактической медицины” Минздрава России, ФГБУ “Национальный медицинский исследовательский центр терапии и профилактической медицины” Минздрава России, iskripnikova@gnicpm.ru, 101990 Москва, Петроверигский пер., 10, стр.3, Российская Федерация

Обзор посвящен методике количественной компьютерной томографии (ККТ, QCT - quantitative computed tomography). При ККТ производится перевод рентгеновской плотности (HU) в минеральную плотность кости (МПК, мг/мл) с помощью линейных зависимостей, полученных при использования калибровочных стандартов (фантомов). При сопоставлении с нормативными возрастными данными возможна диагностика остеопороза (ОП). В обзоре представлены различные методики ККТ и их диагностические возможности в соответствии с позициями ISCD 2019 (International Society for Clinical Densitometry). Рассмотрены результаты сравнения ККТ и стандартной двухэнергетической рентгеновской абсорбциометрии (ДРА, DXA - dualenergy Х-ray absorptiometry). Отмечено, что при исследовании проксимального отдела бедра результаты методик хорошо сопоставимы, по результатам обеих методик возможна диагностика ОП по Т-критерию. Однако при исследовании позвоночника при ККТ оценивается объемная МПК губчатого вещества тел позвонков, а при ДРА оценивается проекционная МПК. Различны и подходы к интерпретации результатов - при постановке диагноза ОП при ДРА позвоночника используется Т-критерий, а при ККТ - критерии ACR (American College of Radiology). В обзоре описаны фантомы, применяемые в ККТ, приведены данные по лучевой нагрузке при проведении ККТ и ДРА. Описан подход к оппортунистическому скринингу ОП методом ККТ по результатам ранее проведенной КТ, включая автоматизированные его варианты с использованием технологий искусственного интеллекта. Эти перспективные методики привлекательны ввиду большого количества выполняемых КТ-исследований и исключения проведения дополнительных исследований.

Ключевые слова:
количественная компьютерная томография, КТ-денситометрия, остеоденситометрия, минеральная плотность кости, двухэнергетическая рентгеновская абсорбциометрия, остеопороз, фантомы, Quantitative Computed Tomography, QCT, bone mineral density, BMD, Osteoporosis, phantom

Литература:
1.Beckmann E.C. CT scanning the early days. Br. J. Radiol. 2006; 79 (937): 5-8. https://doi.org/10.1259/bjr/29444122
2.Whitehouse R.W., Adams J.E. Single energy quantitative computed tomography: the effects of phantom calibration material and kVp on QCT bone densitometry. Br. J. Radiol. 1992; 65 (778): 931-934. https://doi.org/10.1259/0007-1285-65-778-931
3.Mccready R., Gnanasegaran G., Bomanji J.B. A History of Radionuclide Studies in the UK. Cham, 2016. 152 p. https://doi.org/10.1007/978-3-319-28624-2
4.Genant H.K., Engelke K., Prevrhal S. Advanced CT bone imaging in osteoporosis. Rheumatology. 2008; 47 (Suppl. 4): iv9. https://doi.org/10.1093/rheumatology/ken180
5.Cohen A., Dempster D.W., Muller R., Guo X.E., Nickolas T.L., Liu X.S., Zhang X.H., Wirth A.J., van Lenthe G.H., Kohler T., McMahon D.J., Zhou H., Rubin M.R., Bilezikian J.P., Lappe J.M., Recker R.R., Shane E. Assessment of trabecular and cortical architecture and mechanical competence of bone by highresolution peripheral computed tomography: Comparison with transiliac bone biopsy. Osteoporos Int. 2010; 21 (2): 263-273. https://doi.org/10.1007/s00198-009-0945-7
6.Fournier R., Harrison R.E. Strategies for studying bone loss in microgravity. Reach. 2020: 17-20: 100036. https://doi.org/10.1016/j.reach.2020.100036
7.Dadwal U.C., Maupin K.A., Zamarioli A., Tucker A., Harris J.S., Fischer J.P., Rytlewski J.D., Scofield D.C., Wininger A.E., Bhatti F.U.R., Alvarez M., Childress P.J., Chakraborty N., Gautam A., Hammamieh R., Kacena M.A. The effects of spaceflight and fracture healing on distant skeletal sites. Sci. Rep. 2019; 9 (1): 11419 (2019). https://doi.org/10.1038/s41598-019-47695-3
8.Bousson V., Le Bras A., Roqueplan F., Kang Y., Mitton D., Kolta S., Bergot C., Skalli W., Vicaut E., Kalender W., Engelke K., Laredo J.D. Volumetric quantitative computed tomography of the proximal femur: Relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int. 2006; 17 (6): 855-864. https://doi.org/10.1007/s00198-006-0074-5
9.Guglielmi G., Lang T.F., Cammisa M., Genant H.K. Quantitative Computed Tomography of the Axial Skeleton. Bone Densitometry and Osteoporosis. Berlin, Heidelberg: Springer. 336-347. https://doi.org/10.1007/978-3-642-80440-3_16
10.Cann C.E., Genant H.K. Precise measurement of vertebral mineral content using computed tomography. J. Comput. Assist. Tomogr. 1980; 4 (4): 493-500. https://doi.org/10.1097/00004728-198008000-00018
11.Faulkner K.G., Gluer C.C., Grampp S., Genant H.K. Crosscalibration of liquid and solid QCT calibration standards: Corrections to the UCSF normative data. Osteoporos Int. 1993; 3 (1): 36-42. https://doi.org/10.1007/BF01623175
12.Engelke K. Quantitative Computed Tomography - Current Status and New Developments. J. Clin. Densitom. 2017; 20 (3): 309-321. https://doi.org/10.1016/j.jocd.2017.06.017
13.2019 ISCD Official Positions - Adult - International Society for Clinical Densitometry Available at: https://iscd.app.box.com/s/5r713cfzvf4gr28q7zdccg2i7169fv86. Accessed July 14, 2021.
14.The American College of Radiology. ACR-SPR-SSR Practice Parameter for the Performance of Musculoskeletal Quantitative Computed Tomography (Qct). Published 2018. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/QCT.pdf Accessed July 14, 2021
15.Emohare O., Cagan A., Polly D.W., Gertner E. Opportunistic computed tomography screening shows a high incidence of osteoporosis in ankylosing spondylitis patients with acute vertebral fractures. J. Clin. Densitom. 2015; 18 (1): 17-21. https://doi.org/10.1016/j.jocd.2014.07.006
16.Pickhardt P.J., Lee L.J., del Rio A.M., Lauder T., Bruce R.J., Summers R.M., Pooler B.D., Binkley N. Simultaneous screening for osteoporosis at CT colonography: Bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J. Bone Miner. Res. 2011; 26 (9): 2194-2203. https://doi.org/10.1002/jbmr.428
17.Jang S., Graffy P.M., Ziemlewicz T.J., Lee S.J., Summers R.M., Pickhardt P.J. Opportunistic osteoporosis screening at routine abdominal and Thoracic CT: Normative L1 trabecular attenuation values in more than 20 000 adults. Radiology. 2019; 291 (2): 360-367. https://doi.org/10.1148/radiol.2019181648
18.Alacreu E., Moratal D., Arana E. Opportunistic screening for osteoporosis by routine CT in Southern Europe. Osteoporos Int. 2017; 28 (3): 983-990. https://doi.org/10.1007/s00198-016-3804-3
19.Власова И.С., Терновой С.К., Сорокин А.Д., Горбатов М.М., Вожагов В.В. Возрастные изменения минеральной плотности позвонков в норме у российской популяции. Вестник рентгенологии и радиологии. 1998; 6: 28-33.
20.Власова И.С., Сорокин А.Д., Терновой С.К. Возрастные изменения минеральной плотности трабекулярного вещества позвонков и риск переломов. Медицинская визуализация. 1998; 4: 31-35.
21.Engelke K., Lang T., Khosla S., Qin L., Zysset P., Leslie W.D., Shepherd J.A., Schousboe J.T. Clinical use of quantitative computed tomography (QCT) of the hip in the management of osteoporosis in adults: the 2015 ISCD official positions Part I. J. Clin. Densitom. 2015; 18 (3): 338-358. https://doi.org/10.1016/j.jocd.2015.06.012
22.Laaksonen M.M.L., Sievanen H., Tolonen S., et al. Determi nants of bone strength and fracture incidence in adult Finns: cardiovascular risk in young finns study (the GENDI pQCT study). Arch. Osteoporos. 2010; 5 (1-2): 119-130. https://doi.org/10.1007/s11657-010-0043-7
23.Scanco Medical - Xtreme CT II (specification) Available at: https://pdf.medicalexpo.com/pdf/scanco-medical/xtremect-ii/105918-145347.html. Accessed July 14, 2021.
24.Guglielmi G., Grimston S.K., Fischer K.C., Pacifici R. Osteoporosis: Diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology. 1994; 192 (3): 845-850. https://doi.org/10.1148/radiology.192.3.8058958
25.Reinbold W.D., Genant H.K., Reiser U.J., Harris S.T, Ettinger B. Bone mineral content in early-postmenopausal and postmenopausal osteoporotic women: Comparison of measurement methods. Radiology. 1986; 160 (2): 469-478. https://doi.org/10.1148/radiology.160.2.3726129
26.Петряйкин А.В., Кузнецов С.Ю., Артюкова З.Р., и др. Сравнение асинхронной количественной компьютерной томографии и двуэнергетической рентгеновской абсорбциометрии с узкоугольным веерным пучком для оценки состояния МПК в области проксимального отдела бедра. Сборник тезисов VII Российского конгресса по остеопорозу. Остеопороз и остеопатии. 2020; 23 (2): 120-121.
27.Centre for Metabolic Bone Diseases, University of Sheffield. FRAX - Fracture Risk Assessement Tool. Available at: https://www.sheffield.ac.uk/FRAX/tool.aspx Accessed July 14, 2021
28.Yu W., Gluer C.C., Grampp S., Jergas M., Fuerst T., Wu C.Y., Lu Y., Fan B., Genant H.K. Spinal bone mineral assessment in postmenopausal women: A comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int. 1995; 5 (6): 433-439. https://doi.org/10.1007/BF01626604
29.Loffler M.T., Jacob A., Scharr A., Sollmann N., Burian E., El Husseini M., Sekuboyina A., Tetteh G., Zimmer C., Gempt J., Baum T., Kirschke J.S. Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA. Eur. Radiol. Published online January 2021: 1-9. https://doi.org/10.1007/s00330-020-07655-2
30.Engelke K., Adams J.E., Armbrecht G., Augat P., Bogado C.E., Bouxsein M.L., Felsenberg D., Ito M., Prevrhal S., Hans D.B., Lewiecki E.M. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: The 2007 ISCD Official Positions. J. Clin. Densitom. 2008; 11 (1): 123-162. https://doi.org/10.1016/j.jocd.2007.12.010
31.Zysset P., Qin L., Lang T., et al. Clinical Use of Quantitative Computed Tomography-Based Finite Element Analysis of the Hip and Spine in the Management of Osteoporosis in Adults: the 2015 ISCD Official Positions - Part II. J. Clin. Densitom. 2015; 18 (3): 359-392. https://doi.org/10.1016/j.jocd.2015.06.011
32.Engelke K., Lang T., Khosla S., Qin L., Zysset P., Leslie W.D., Shepherd J.A., Shousboe J.T. Clinical use of quantitative computed tomography-based advanced techniques in the management of osteoporosis in adults: The 2015 ISCD Official Positions-Part III. J. Clin. Densitom. 2015; 18 (3): 393-407. https://doi.org/10.1016/j.jocd.2015.06.010
33.Kalender W.A., Felsenberg D., Genant H.K., Fischer M., Dequeker J., Reeve J. The European Spine Phantom--a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur. J. Radiol. 1995; 20 (2): 83-92. https://doi.org/10.1016/0720-048x(95)00631-y
34.Петряйкин А.В., Низовцова Л.А., Сергунова К.А., et al. Оценка точности асинхронной компьютерной денситометрии по данным фантомного моделирования. Радиология - практика. 2019; 6 (78): 49-59.
35.Bonaretti S., Carpenter R.D., Saeed I. et al. Novel anthropomorphic hip phantom corrects systemic interscanner differences in proximal femoral vBMD. Phys. Med. Biol. 2014; 59 (24): 7819-7834. https://doi.org/10.1088/0031-9155/59/24/7819
36.Lang T.F., Li J., Harris S.T., Genant H.K. Assessment of vertebral bone mineral density using volumetric quan titative CT. J. Comput. Assist. Tomogr. 1999; 23 (1): 130-137. https://doi.org/10.1097/00004728-199901000-00027
37.Wang L., Su Y., Wang Q., Duanmu Y., Yang M., Yi C., Cheng X. Validation of asynchronous quantitative bone densitometry of the spine: Accuracy, short-term reproducibility, and a comparison with conventional quantitative computed tomography. Sci. Rep. 2017; 7 (1): 6284. https://doi.org/10.1038/s41598-017-06608-y
38.Brown J.K., Timm W., Bodeen G., Chason A., Perry M., Vernacchia F., DeJournett R. Asynchronously Calibrated Quantitative Bone Densitometry. J. Clin. Densitom. 2017; 20 (2): 216-225. https://doi.org/10.1016/j.jocd.2015.11.001
39.Pickhardt P.J., Bodeen G., Brett A., Brown J.K., Binkley N. Comparison of femoral neck BMD evaluation obtained using lunar DXA and QCT with asynchronous calibration from CT colonography. J. Clin. Densitom. 2015; 18 (1): 5-12. https://doi.org/10.1016/j.jocd.2014.03.002
40.Gausden E.B., Nwachukwu B.U., Schreiber J.J., Lorich D.G., Lane J.M. Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: A qualitative systematic review. J. Bone Jt. Surg. - Am. Vol. 2017; 99 (18): 1580-1590. https://doi.org/10.2106/JBJS.16.00749
41.Brown J.K., Timm W., Bodeen G., Chason A., Perry M., Vernacchia F., DeJournett R. Asynchronously Calibrated Quantitative Bone Densitometry. J. Clin. Densitom. 2017; 20 (2): 216-225. https://doi.org/10.1016/j.jocd.2015.11.001
42.Ziemlewicz T.J., Maciejewski A., Binkley N., Brett A.D., Brown J.K., Pickhardt P.J. Opportunistic Quantitative CT Bone Mineral Density Measurement at the Proximal Femur Using Routine Contrast-Enhanced Scans: Direct Comparison With DXA in 355 Adults. J. Bone Miner. Res. 2016; 31 (10): 1835-1840. https://doi.org/10.1002/jbmr.2856
43.Summers R.M., Baecher N., Yao J., Liu J., Pickhardt P.J., Choi J.R., Hill S. Feasibility of Simultaneous Computed Tomographic Colonography and Fully Automated Bone Mineral Densitometry in a Single Examination. J. Comput. Assist. Tomogr. 2011; 35 (2): 212-216. https://doi.org/10.1097/RCT.0b013e3182032537
44.Cheng X., Zhao K., Zha X., et al. Opportunistic Screening Using Low-Dose CT and the Prevalence of Osteoporosis in China: A Nationwide, Multicenter Study. J. Bone Miner. Res. Published online November 2020:jbmr.4187. https://doi.org/10.1002/jbmr.4187
45.Boden S.D., Goodenough D.J., Stockham C.D., Jacobs E., Dina T., Allman R.M. Precise measurement of vertebral bone density using computed tomography without the use of an external reference phantom. J. Digit. Imaging. 1989; 2 (1): 31-38. https://doi.org/10.1007/BF03168013
46.Gudmundsdottir H., Jonsdottir B., Kristinsson S., Johanne sson A., Goodenough D., Sigurdsson G. Vertebral bone density in icelandic women using quantitative computed tomography without an external reference phantom. Osteoporos Int. 1993; 3 (2): 84-89. https://doi.org/10.1007/BF01623378
47.Kopperdahl D.L., Aspelund T., Hoffmann P.F., Sigurdsson S., Siggeirsdottir K., Harris T.B., Gudnason V., Keaveny T.M. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J. Bone Miner. Res. 2014; 29 (3): 570-580. https://doi.org/10.1002/jbmr.2069
48.Valentinitsch A., Trebeschi S., Kaesmacher J., Lorenz C., Loffler M.T., Zimmer C., Baum T., Kirschke J.S. Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int. 2019; 30 (6): 1275-1285. https://doi.org/10.1007/s00198-019-04910-1
49.Roski F., Hammel J., Mei K., Baum T., Kirschke J.S., Laugerette A., Kopp F.K., Bodden J., Pfeiffer D., Pfeiffer F., Rummeny E.J., Noel P.B., Gersing A.S., Schwaiger B.J. Bone mineral density measurements derived from duallayer spectral CT enable opportunistic screening for osteoporosis. Eur. Radiol. 2019; 29 (11): 6355-6363. https://doi.org/10.1007/s00330-019-06263-z
50.Петряйкин А.В., Белая Ж.Е., Киселeва А.Н., Артюкова З.Р., Беляев М.Г., Кондратенко В.А., Писов М.Е., Соловьев А.В., Сморчкова А.К., Абуладзе Л.Р., Киева И.Н., Феданов В.А., Яссин Л.Р., Семёнов Д.С., Кудрявцев Н.Д., Щелыкалина С.П., Зинченко В.В., Ахмад Е.С., Сергунова К.А., Гомболевский В.А., Низовцова Л.А., Владзимир ский А.В., Морозов С.П. Технология искусственного интеллекта для распознавания компрессионных переломов позвонков с помощью модели морфометрического анализа, основанной на сверточных нейронных сетях. Проблемы эндокринологии. 2020; 66 (5): 48-60. https://doi.org/10.14341/probl12605
51.Graffy P.M., Liu J., Pickhardt P.J., Burns J.E., Yao J., Summers R.M. Deep learning-based muscle segmentation and quantifcation at abdominal CT: Application to a longitudinal adult screening cohort for sarcopenia assessment. Br. J. Radiol. 2019; 92 (1100). https://doi.org/10.1259/bjr.20190327
52.Paris M.T. Body Composition Analysis of Computed Tomography Scans in Clinical Populations: The Role of Deep Learning. Lifestyle Genomics. 2020; 13 (1): 28-31. https://doi.org/10.1159/000503996
53.Pickhardt P.J., Lee S.J., Liu J., Yao J., Lay N., Graffy P.M., Summers R.M. Population-based opportunistic osteoporosis screening: Validation of a fully automated CT tool for assessing longitudinal BMD changes. Br. J. Radiol. 2019; 92 (1094). https://doi.org/10.1259/bjr.20180726
54.Dagan N., Elnekave E., Barda N., Bregman-Amitai O., Bar A., Orlovsky M., Bachmat E., Balicer R.D. Automated opportunistic osteoporotic fracture risk assessment using computed tomography scans to aid in FRAX underutilization. Nat. Med. 2020; 26 (1): 77-82. https://doi.org/10.1038/s41591-019-0720-z
55.Australian Radiation Protection and Nuclear Safety Agency. Flying and health: Cosmic radiation exposure for casual flyers and aircrew. Available at: https://www.arpansa.gov.au/understanding-radiation/radiationsources/more-radiation-sources/flying-and-health Accessed July 14, 2021.
56.Damilakis J., Adams J.E., Guglielmi G., Link T.M.. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur. Radiol. 2010; 20 (11): 2707-2714. https://doi.org/10.1007/s00330-010-1845-0
57.Jang J., Jung S.E., Jeong W.K., Lim Y.S., Choi J.I., Park M.Y., Kim Y., Lee S.K., Chung J.J., Eo H., Yong H.S., Hwang S.S. Radiation Doses of Various CT Protocols: A Multicenter Longitudinal Observation Study. J. Korean Med. Sci. 2016; 31: 24-31. https://doi.org/10.3346/jkms.2016.31.S1.S24
58.Khoo B.C., Brown K., Cann C., Zhu K., Henzell S., Low V., Gustafsson S., Price R.I., Prince R.L. Comparison of QCTderived and DXA-derived areal bone mineral density and T scores. Osteoporos Int. 2009; 20 (9): 1539-1545. https://doi.org/10.1007/s00198-008-0820-y

Quantitative Computed Tomography, modern data. Review

Petraikin A. V., Skripnikov I. A.

In the review we discussed about the method of quantitative computed tomography (QCT, quantitative computed tomography). In QCT, X-ray density (HU) is converted to bone mineral density (BMD mg / ml) using linear relationships obtained by scanning calibration standards (phantoms). When compared with the normative age data, it is possible to diagnose osteoporosis (OP). The review presents various QCT techniques and their diagnostic capabilities in accordance with the positions of ISCD 2019 - (International Society for Clinical Densitometry). The results of comparison of QCT and conventional dual-energy X-ray absorptiometry (DXA) are considered. It is noted that in the study of the proximal femur (PF), the results of the methods are well comparable, according to the results of both methods, it is possible to diagnose OP by the T-score. However, when examining the spine QCT, the volume BMD of the trabecular bone of the vertebral bodies is assessed, and with DXA, the projection BMD is assessed. The approaches to the interpretation of the results are also different - diagnosis of OP in DXA of the spine based on the T-score, but in QCT, the ACR (American College of Radiology) criteria are used. We describe the phantoms used in QCT, as well as provide data on radiation exposure during QCT and DXA. The article describes an approach to opportunistic screening of osteoporosis by the QCT based on the results of previously performed CT scans, including its automated work-flow using artificial intelligence technologies. These promising techniques are attractive due to the large number of CT examinations performed and the exclusion of additional examinations.

Keywords:
количественная компьютерная томография, КТ-денситометрия, остеоденситометрия, минеральная плотность кости, двухэнергетическая рентгеновская абсорбциометрия, остеопороз, фантомы, Quantitative Computed Tomography, QCT, bone mineral density, BMD, Osteoporosis, phantom

Новости   Магазин   Журналы   Контакты   Правила   Доставка   О компании  
ООО Издательский дом ВИДАР-М, 2025