Выход
Вход/Login
 
E-mail
Пароль/Password
Забыли пароль?
Введите E-mail и жмите тут. Пароль будет выслан на указанный адрес
Войти (LogIn)

 

Если вы первый раз здесь, то зарегистрируйтесь

Регистрация/Sign Up
Полное имя (Ф И О)/Full name
E-mail
Повторите E-mail
Телефон/Phone
Зарегистрироваться,
на ваш E-mail будет выслан временный пароль

Нажимая кнопку Зарегистрироваться, вы соглашаетесь с Правилами сайта и Политикой Конфиденциальности http://vidar.ru/rules.asp

 

Медицинская литература. Новинки


 

 

 

 

 

 
вce журналы << Поиск по всем журналам: э << очистить поиск << Медицинская визуализация << 2024 год << №2 <<
стр.145
отметить
статью

Неинвазивное измерение метаболизма кислорода, часть 2: новые методики в ПЭТ и МРТ

Постнов А. А., Калаева Д. Б., Балахонов А. Б., Пронин И. Н.
Вы можете загрузить полный текст статьи в формате pdf
Постнов А. А. - ФГАУ “НМИЦ нейрохирургии им. акад. Н.Н. Бурденко” Минздрава России; 125047 Москва, 4-я Тверская-Ямская ул., д.16, Российская Федерация Национальный исследовательский ядерный университет “МИФИ”; 115409 Москва, Каширское ш., 31, Российская Федерация 115230 Москва, Варшавское шоссе, д. 46, Российская Федерация Физический институт им. П.Н. Лебедева РАН; 119991 Москва, Ленинский пр-т, д. 53, Российская Федерация, postnov.email@gmail.com,
Калаева Д. Б. - ФГАУ “НМИЦ нейрохирургии им. акад. Н.Н. Бурденко” Минздрава России; 125047 Москва, 4-я Тверская-Ямская ул., д.16, Российская Федерация Национальный исследовательский ядерный университет “МИФИ”; 115409 Москва, Каширское ш., 31, Российская Федерация, dkalaeva@nsi.ru,
Балахонов А. Б. - ФГАУ “НМИЦ нейрохирургии им. акад. Н.Н. Бурденко” Минздрава России; 125047 Москва, 4-я Тверская-Ямская ул., д.16, Российская Федерация, ABalakhonov@nsi.ru,
Пронин И. Н. - ФГАУ “НМИЦ нейрохирургии им. акад. Н.Н. Бурденко” Минздрава России; 125047 Москва, 4-я Тверская-Ямская ул., д.16, Российская Федерация, pronin@nsi.ru,

Метаболизм кислорода является ключевым фактором жизни живого организма. Статья является второй частью обзора методов измерения метаболизма кислорода.Цель исследования: Дать представление о новых методиках измерения перфузии, основанных на МРТ и КТ, сравнить их точность с «золотым стандартом» - измерениями на основе ПЭТ с H215O, а также описать их роль в клинической практике.Материалы и методы. Проанализировано более 200 работ из базы научных публикаций Pubmed по ключевым словам «perfusion, MRI, CT, ASL, oxygen metabolism», также изучались релевантные ссылки в данных публикациях, не содержащие указанных ключевых слов, либо содержащие их в иной формулировке.Результаты. В рамках данного обзора была отобраны 42 публикации, описывающие КТ- и МР- перфузию с использованием контрастирующих препаратов и МР ASL перфузию. Приведены примеры использования описанных методик в фундаментальных исследованиях и прикладной медицине.Заключение. Результаты, полученные с помощью новых неинвазивных методик молекулярной визуализации в большинстве случаев сопоставимы с данными ПЭТ с H215O, что позволяет шире применять МРТ и КТ исследования метаболизма кислорода в клинической практике.

Ключевые слова:
метаболизм кислорода, ПЭТ с 15-O, КТ-перфузия, МР-перфузия, МР ASL-перфузия, oxygen metabolism, 15-O PET, CT perfusion, MR perfusion, MR ASL perfusion

Литература:
1.Van Der Veldt A.A.M., Hendrikse N.H., Harms H.J. et al. Quantitative parametric perfusion images using 15O-labeled water and a clinical PET/CT scanner: Test-retest variability in lung cancer. J. Nucl. Med. 2010; 51 (11): 1684–1690. https://doi.org/10.2967/jnumed.110.079137
2.Rosen B.R., Belliveau J.W., Vevea J.M., Brady T.J. Perfusion imaging with NMR contrast agents. Magn. Reson. Med. 1990; 14 (2): 249–265. https://doi.org/10.1002/mrm.1910140211
3.Copen W.A., Lev M.H., Rapalino O. Brain Perfusion: Computed Tomography and Magnetic Resonance Techniques. Vol 135. 1st ed. Elsevier B.V.; 2016. https://doi.org/10.1016/B978-0-444-53485-9.00006-4
4.Wannamaker R., Buck B., Butcher K. Multimodal CT in Acute Stroke. Curr. Neurol. Neurosci Rep. 2019; 19 (9): 63. https://doi.org/10.1007/s11910-019-0978-z
5.Vilela P., Rowley H.A. Brain ischemia: CT and MRI techniques in acute ischemic stroke. Eur. J. Radiol. 2017; 96 (May): 162–172. https://doi.org/10.1016/j.ejrad.2017.08.014
6.Batalov A.I., Zakharova N.E., Pronin I.N. et al. 3D pCASL-perfusion in preoperative assessment of brain gliomas in large cohort of patients. Sci Rep. 2022; 12 (1): 2121. https://doi.org/10.1038/s41598-022-05992-4
7.Batalov A.I., Zakharova N.E., Chekhonin I. V. et al. Arterial Spin Labeling Perfusion in Determining the IDН1 Status and Ki-67 Index in Brain Gliomas. Diagnostics. 2022; 12 (6): 1–12. https://doi.org/10.3390/diagnostics12061444
8.Shults E.I., Pronin I.N., Batalov A.I., et al. CT-perfusion in assessment of the malignant gliomas hemodynamics. Med Vis. 2020; 24 (2): 105–118. https://doi.org/10.24835/1607-0763-2020-2-105-118 (In Russian)
9.Ibaraki M., Ohmura T., Matsubara K., Kinoshita T. Reliability of CT perfusion-derived CBF in relation to hemodynamic compromise in patients with cerebrovascular steno-occlusive disease: A comparative study with 15O PET. J. Cereb. Blood Flow. Metab. 2015; 35 (8): 1280–1288. https://doi.org/10.1038/jcbfm.2015.39
10.Lassen N., Indvar D. Brain regions involved in voluntary movements as revealed by radioisotopic mapping of CBF or CMR-glucose changes. Rev Neurol (Paris). 1990; 146 (10): 620–625.
11.Gur D., Good W.F., Wolfson S.K. et al. In vivo mapping of local cerebral blood flow by xenon-enhanced computed tomography. Science (80- ). 1982; 215 (4537): 1267–1268. https://doi.org/10.1126/science.7058347
12.Yonas H., Darby J.M., Marks E.C. et al. CBF measured by Xe-CT: Approach to analysis and normal values. J. Cereb. Blood Flow. Metab. 1991; 11 (5): 716–725. https://doi.org/10.1038/jcbfm.1991.128
13.Kety S.S., Schmidt C.F. the Nitrous Oxide Method for the Quantitative Determination of Cerebral Blood Flow in Man: Theory, Procedure and Normal Values. J. Clin. Invest. 1948; 27 (4): 476–483. https://doi.org/10.1172/JCI101994
14.Mullins M.E. Stroke Imaging with Xenon-CT. Semin. Ultrasound, CT MRI. 2006; 27 (3): 219–220. https://doi.org/10.1053/j.sult.2006.02.006
15.Yonas H., Pindzola R.R., Johnson D.W. Xenon / Computed Tomography Cerebral Blood Flow and its use in Clinical Management. Neurosurg. Clin. N. Am. 1996; 7 (4): 605–616. https://doi.org/10.1016/S1042-3680(18)30349-8
16.Svedung Wettervik T., Engquist H., Hanell A. et al. Cerebral Blood Flow and Oxygen Delivery in Aneurysmal Subarachnoid Hemorrhage: Relation to Neurointensive Care Targets. Neurocrit. Care. 2022; 37 (1): 281–292. https://doi.org/10.1007/s12028-022-01496-1
17.Williams D.S., Detre J.A., Leigh J.S., Koretsky A.P. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc. Natl. Acad. Sci U S A. 1992; 89 (1): 212–216. https://doi.org/10.1073/pnas.89.1.212
18.Fan A.P., Jahanian H., Holdsworth S.J., Zaharchuk G. Comparison of cerebral blood flow measurement with-water positron emission tomography and arterial spin labeling magnetic resonance imaging: A systematic review. J. Cereb. Blood Flow. Metab. 2015; 36 (5): 842–861. https://doi.org/10.1177/0271678X16636393
19.De Vis J.B., Hendrikse J., Groenendaal F. et al. Impact of neonate haematocrit variability on the longitudinal relaxation time of blood: Implications for arterial spin labelling MRI. NeuroImage Clin. 2014; 4: 517–525. https://doi.org/10.1016/j.nicl.2014.03.006
20.Steen R.G., Gronemeyer S.A., Kingsley P.B., Reddick W.E., Langston J.S., Taylor J.S. Precise and accurate measurement of proton T1 in human brain in vivo: Validation and preliminary clinical application. J. Magn. Reson. Imaging. 1994; 4 (5): 681–691. https://doi.org/10.1002/jmri.1880040511
21.Heijtel D.F.R., Mutsaerts H.J.M.M., Bakker E. et al. Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: A head-to-head comparison with 15O H2O positron emission tomography. Neuroimage. 2014; 92: 182–192. https://doi.org/10.1016/j.neuroimage.2014.02.011
22.Puig O., Vestergaard M.B., Lindberg U. et al. Phase contrast mapping MRI measurements of global cerebral blood flow across different perfusion states – A direct comparison with 15O-H2O positron emission tomography using a hybrid PET/MR system. J. Cereb. Blood Flow. Metab. 2019; 39 (12): 2368–2378. https://doi.org/10.1177/0271678X18798762
23.Puig O., Henriksen O.M., Vestergaard M.B. et al. Comparison of simultaneous arterial spin labeling MRI and 15O-H2O PET measurements of regional cerebral blood flow in rest and altered perfusion states. J. Cereb. Blood Flow. Metab. 2020; 40 (8): 1621–1633. https://doi.org/10.1177/0271678X19874643
24.Zhang K., Herzog H., Mauler J. et al. Comparison of cerebral blood flow acquired by simultaneouswater positron emission tomography and arterial spin labeling magnetic resonance imaging. J. Cereb Blood. Flow. Metab. 2014; 34 (8): 1373–1380. https://doi.org/10.1038/jcbfm.2014.92
25.van Golen L.W., Kuijer J.P.A., Huisman M.C. et al. Quantification of Cerebral Blood Flow in Healthy Volunteers and Type 1 Diabetic Patients: Comparison of MRI Arterial Spin Labeling andH 2 O Positron Emission Tomography ( PET ). J. Magn. Reson. Imaging. 2014; 40: 1300–1309. https://doi.org/10.1002/jmri.24484
26.Puig O., Henriksen O.M., Andersen F.L. et al. Deep-learning-based attenuation correction in dynamicH2O studies using PET/MRI in healthy volunteers. J. Cereb. Blood Flow. Metab. 2021; 41 (12): 3314–3323. https://doi.org/10.1177/0271678X211029178
27.Fan A.P., Khalighi M.M., Guo J. et al. Identifying hypoperfusion in moyamoya disease with arterial spin labeling and an-Water positron emission tomography/magnetic resonance imaging normative database. Stroke. 2019; 50 (2): 373–380. https://doi.org/10.1161/STROKEAHA.118.023426
28.Zhao M.Y., Fan A.P., Chen D.Y.T., et al. Using arterial spin labeling to measure cerebrovascular reactivity in Moyamoya disease: Insights from simultaneous PET/MRI. J. Cereb. Blood Flow. Metab. 2022; 42 (8): 1493–1506. https://doi.org/10.1177/0271678X221083471
29.Itagaki H., Kokubo Y., Kawanami K. et al. Arterial spin labeling magnetic resonance imaging at short post-labeling delay reflects cerebral perfusion pressure verified by oxygen-15-positron emission tomography in cerebrovascular steno-occlusive disease. Acta Radiol. 2021; 62 (2): 225–233. https://doi.org/10.1177/0284185120917111
30.Besheli L.D., Ahmed A., Hamam O. et al. Arterial Spin Labeling technique and clinical applications of the intracranial compartment in stroke and stroke mimics – A case-based review. Neuroradiology. 2022; 35 (4): 437–453. https://doi.org/10.1177/19714009221098806
31.Soldozy S., Galindo J., Snyder H. et al. Clinical utility of arterial spin labeling imaging in disorders of the nervous system. Neurosurg. Focus. 2019; 47 (6): E5. https://doi.org/10.3171/2019.9.FOCUS19567
32.Dolui S., Fan A.P., Zhao M.Y. et al. Reliability of arterial spin labeling derived cerebral blood flow in periventricular white matter. Neuroimage: Reports. 2021; 1 (4): 100063. https://doi.org/10.1016/j.ynirp.2021.100063
33.Ssali T., Anazodo U.C., Thiessen J.D. et al. A noninvasive method for quantifying cerebral blood flow by hybrid PET/MRI. J. Nucl. Med. 2018; 59 (8): 1329–1334. https://doi.org/10.2967/jnumed.117.203414
34.Narciso L., Ssali T., Iida H., St Lawrence K. A non-invasive reference-based method for imaging the cerebral metabolic rate of oxygen by PET/MR: Theory and error analysis. Phys. Med. Biol. 2021; 66 (6). https://doi.org/10.1088/1361-6560/abe737
35.Siripongsatian D., Kunawudhi A., Promteangtrong C. et al. Alterations in 18F-FDG PET/MRI and 15O-Water PET Brain Findings in Patients with Neurological Symptoms after COVID-19 Vaccination: A Pilot Study. Clin. Nucl. Med. 2022; 47 (3): E230–E239. https://doi.org/10.1097/RLU.0000000000004041
36.Khalighi M.M., Deller T.W., Fan A.P., et al. Image-derived input function estimation on a TOF-enabled PET/MR for cerebral blood flow mapping. J. Cereb. Blood Flow. Metab. 2018; 38 (1): 126–135. https://doi.org/10.1177/0271678X17691784
37.Zhang B.L., Liu J., Lei Y. et al. An Epigenetic Mechanism of High Gdnf Transcription in Glioma Cells Revealed by Specific Sequence Methylation. Mol Neurobiol. 2015; 53 (7): 4352–4362. https://doi.org/10.1007/s12035-015-9365-1
38.Lan X., Younis M.H., Li K., Cai W. First clinical experience of 106 cm , long axial field-of-view ( LAFOV ) PET / CT: an elegant balance between standard axial (23 cm ) and total-body (194 cm ) systems. Eur. J. Nucl. Med. Mol. Imaging. 2021; 48: 3755–3759. https://doi.org/10.1007/s00259-021-05505-x
39.Gupta A., Chazen J.L., Hartman M. et al. Cerebrovascular Reserve and Stroke Risk in Patients With Carotid Stenosis or Occlusion A Systematic Review and Meta-Analysis. Stroke. 2012; 43: 2884–2891. https://doi.org/10.1161/STROKEAHA.112.663716
40.Ishii K., Kitagaki H., Kono M., Mon E. Decreased Medial Temporal Oxygen Metabolism in Alzheimer ’ s Disease Shown by PET. J. Nucl. Med. 1996; 37: 1159–1165.
41.Cho J., Lee J., An H. et al. Cerebral oxygen extraction fraction (OEF): Comparison of challenge-free gradient echo QSM+qBOLD (QQ) with 15O PET in healthy adults. J. Cereb. Blood Flow. Metab. 2021; 41 (7): 1658–1668. https://doi.org/10.1177/0271678X20973951
42.Jiang D., Deng S., Franklin C.G. et al. Validation of T2-based oxygen extraction fraction measurement with 15O positron emission tomography. Magn. Reson. Med. 2021; 85 (1): 290–297. https://doi.org/10.1002/mrm.28410
43.Ogawa S., Lee T.M., Kay A.R., Tank D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. 1990; 87: 9868–9872. https://doi.org/10.1073/pnas.87.24.9868
44.He X., Zhu M., Yablonskiy D.A. Validation of Oxygen Extraction Fraction Measurement by qBOLD Technique. Magn. Reson. Med. 2008; 60: 882–888. https://doi.org/10.1002/mrm.21719
45.Lu H., Xu F., Grgac K. et al. Calibration and Validation of TRUST MRI for the Estimation of Cerebral Blood Oxygenation. Magn Reson Med. 2012; 67: 42–49. https://doi.org/10.1002/mrm.22970
46.Wehrli F.W., Rodgers Z., Jain V. et al. Time-Resolved MRI Oximetry for Quantifying CMRO 2 and Vascular Reactivity. Acad Radiol. 2014; 21 (2): 207–214. https://doi.org/10.1016/j.acra.2013.11.001
47.Jain V., Langham M.C., Wehrli F.W. MRI estimation of global brain oxygen consumption rate. J Cereb Blood Flow Metab. 2010; 30 (9): 1598–1607. https://doi.org/10.1038/jcbfm.2010.49
48.Li W., Xu F., Zhu D., Zijl P.C.M. Van. T2 -oximetry – based cerebral venous oxygenation mapping using Fourier-transform – based velocity-selective pulse trains. Magn Reson Med. 2022; 88 (3): 1292–1302. https://doi.org/10.1002/mrm.29300
49.Ponto L.L.B., Moser D.J., Menda Y. et al. Early Phase PIB-PET as a Surrogate for Global and Regional Cerebral Blood Flow Measures. J. Neuroimaging. 2019; 29 (1): 85–96. https://doi.org/10.1111/jon.12582

Non-Invasive Measurement of Oxygen Metabolism. Part 2: New Techniques in PET and MRI

Postnov A. A., Kalaeva D. B., Balakhonov A. B., Pronin I. N.

Oxygen metabolism is a key factor in the life of a living organism. The article is the second part of a review of methods for measuring oxygen metabolism.Purpose. The aim of this review is to provide an insight into newly developed perfusion measurement techniques based on MRI and CT comparing their accuracy with the “gold standard” H215O PET measurements and describing their role in today’s clinical practice.Materials and methods. More than 200 Pubmed publications were analyzed for the keywords “perfusion, MRI, CT, ASL, oxygen metabolism”. Relevant publications that do not contain these keywords or contain them in a different wording were also studied.Results. This review selected 49 publications describing CT and MR perfusion using contrast agents and MR ASL perfusion. Examples of the use of the described methods in fundamental research and applied medicine are given.Conclusion. The quantitative results obtained using novel non-invasive molecular imaging techniques are in most cases comparable to H215O PET data, which opens the way for broad use of MRI and CT perfusion and oxygen metabolism measurements in clinical practice.

Keywords:
метаболизм кислорода, ПЭТ с 15-O, КТ-перфузия, МР-перфузия, МР ASL-перфузия, oxygen metabolism, 15-O PET, CT perfusion, MR perfusion, MR ASL perfusion

Новости   Магазин   Журналы   Контакты   Правила   Доставка   О компании  
ООО Издательский дом ВИДАР-М, 2025