Новости | Магазин | Журналы | Контакты | Правила | Доставка | |
Вход Регистрация |
Целью настоящей работы было сравнение двух методов оценки локальной жесткости общей сонной артерии: традиционного (путем ручного измерения диаметров в М%режиме) и автоматического (Ech-Tracking%метода). Исследование 60 дистальных фрагментов общих сонных артерий показало, что средние значения жесткости, определенные при помощи М%режима (βM), достоверно ниже, чем при использовании Echo%Tracking%метода (βET): 5,90 ± 2,06 и 8,96 ± 3,71 (р 0,001). Выявлена значимая корреляция между абсолютными значениями жесткости, оцененной двумя методами (r = 0,74, р 0,001). Полученные уравнения регрессии (βM = 2,38 + + 0,34 × βET; βET = 2,46 + 1,23 × βM) позволяют при наличии одного из методов определения локальной жесткости артериальной стенки пересчитать и сопоставить результаты со вторым методом. Внутриоператорская воспроизводимость двух методов оценки жесткости достоверно не отличалась (р = 0,8), коэффициент вариации составляет 17,7 и 14,4% (для М%режима и Echo%Tracking%метода).
Ключевые слова:
ультразвуковая диагностика, М-режим, Echo-Tracking-метод, воспроизводимость, общая сонная артерия, жесткость.
Литература:
1. Mitchell G.F., Parise H., Benjamin E.J. et al.
Changes in arterial stiffness and wave reflection
with advancing age in healthy men and women: the
Framingham Heart Study // Hypertension. 2004.
V. 43. № 6. P. 1239–1245.
2. Liao D., Arnett D.K., Tyroler H.A. et al. Arterial
stiffness and the development of hypertension. The
ARIC study // Hypertension. 1999. V. 34. № 2.
P. 201–206.
3. Arnett D.K., Evans G.W., Riley W.A. Arterial
stiffness: a new cardiovascular risk factor? // Am.
J. Epidemiol. 1994. V. 140. № 8. P. 669–682.
4. Safar M.E. Pulse pressure in essential hypertension: clinical and therapeutical implications // J.
Hypertens. 1989. V. 7. № 10. P. 769–776.
5. Wada T., Kodaira K., Fujishiro K. et al. Correlation of ultrasoundmeasured common carotid
artery stiffness with pathological findings // Arterioscler. Thromb. 1994. V. 14. № 3. P. 479–482.
6. Hollander M., Hak A.E., Koudstaal P.J. et al.
Comparison between measures of atherosclerosis
and risk of stroke: the Rotterdam Study // Stroke.
2003. V. 34. № 10. P. 2367–2372.
7. Mancia G., De Backer G., Dominiczak A. et al. 2007
Guidelines for the management of arterial hypertension: The Task Force for the Management of
Arterial Hypertension of the European Society of
Hypertension (ESH) and of the European Society of
Cardiology (ESC) // Eur. Heart J. 2007. V. 28.
№12. P. 1462–1536.
8. Laurent S., Cockcroft J., Van Bortel L. et al. Expert
consensus document on arterial stiffness: methodological issues and clinical applications // Eur.
Heart J. 2006. V. 27. № 21. P. 2588–2605.
9. McVeigh G.E. Evaluation of arterial compliance //
Hypertension Primer / Ed. by Izzo J.L., Black H.R.
Baltimore, MD: Lippincott Williams & Wilkins,
1999. P. 327–329.
10. Izzo J.L. Jr., Shykoff B.E. Arterial stiffness: clinical relevance, measurement, and treatment // Rev.
Cardiovasc. Med. 2001. V. 2. № 1. P. 29–40.
11. Oliver J.J., Webb D.J. Noninvasive assessment of
arterial stiffness and risk of atheroscleroticevents // Arterioscler. Thromb. Vasc. Biol. 2003.
V. 23. № 4. P. 554–566.
12. Обзор современных методик ранней диагностики
атеросклероза. Режим доступа: // http://
alokamed.ru/stiffness.php, свободный. Загл. с экрана. 20.09.2011.
13. Arnett D.K., Chambless L.E., Kim H. et al.
Variability in ultrasonic measurements of arterial
stiffness in the Atherosclerosis Risk in
Communities study // Ultrasound Med. Biol. 1999.
V. 25. № 2. P. 175–180.
14. Gamble G., Zorn J., Sanders G. et al. Estimation of
arterial stiffness, compliance, and distensibility
from Mmode ultrasound measurements of the common carotid artery // Stroke. 1994. V. 25. № 1.
P. 11–16.
15. Kanters S.D., Elgersma O.E., Banga J.D. et al.
Reproducibility of measurements of intima-media
thickness and distensibility in the common carotid
artery // Eur. J. Vasc. Endovasc. Surg. 1998. V. 16.
№ 1. P. 28–35.
16. Liang Y.L., Teede H., Kotsopoulos D. et al.
Noninvasive measurements of arterial structure
and function: repeatability, interrelationships and
trial sample size // Clin. Sci. 1998. V. 95. № 6.
P. 669–679.
17. Touboul P.J., Hennerici M.G., Meairs S. et al.
Mannheim carotid intimamedia thickness consensus (2004–2006). An update on behalf of the
Advisory Board of the 3rd and 4th Watching the Risk
Symposium, 13th and 15th European Stroke
Conferences, Mannheim, Germany, 2004, and
Brussels, Belgium, 2006 // Cerebrovasc. Dis. 2007.
V. 23. № 1. P. 75–80.
18. Stein J.H., Korcarz C.E., Hurst R.T. et al. Use of
carotid ultrasound to identify subclinical vascular
disease and evaluate cardiovascular disease risk:
a consensus statement from the American Society
of Echocardiography Carotid Intima-Media
Thickness Task Force. Endorsed by the Society for
Vascular Medicine // J. Am. Soc. Echocardiogr.
2008. V. 21. № 2. P. 93–111.
19. Hoeks A.P., Brands P.J., Smeets F.A., Reneman R.S.
Assessment of the distensibility of superficial
arteries // Ultrasound Med. Biol. 1990. V. 16. № 2.
P. 121–128.
20. Arterial elasticity in healthy Chinese. A multi-central collaborative project fore the establishment of
normal reference values of arterial elasticity in
healthy Chinese. Measurement of the CCA elasticity using the eTRACKING technology // Chin. J.
Ultrason. 2008. V. 17. № 7. P. 571–575.
21. Kawasaki T., Sasayama S., Yagi S. et al. Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries //
Cardiovasc. Res. 1987. V. 21. № 9. P. 678–687.
22. Juonala M., Kahonen M., Laitinen T. et al. Effect
of age and sex on carotid intimamedia thickness,
elasticity and brachial endothelial function in
healthy adults: the cardiovascular risk in Young
Finns Study // Eur. Heart J. 2008. V. 29. № 9.
P. 1198–1206.
23. Bjallmark A., Lind B., Peolsson M. et al.
Ultrasonographic strain imaging is superior to conventional non-invasive measures of vascular stiffness in the detection of agedependent differences
in the mechanical properties of the common carotid
artery // Eur. J. Echocardiogr. 2010. V. 11. № 7.
P. 630–636.
24. Selzer R.H., Mack W.J., Lee P.L. et al. Improved
common carotid elasticity and intima-media thickness measurements from computer analysis of
sequential ultrasound frames // Atherosclerosis.
2001. V. 154. № 1. P. 185–193.
25. Dijk J.M., Algra A., van der Graaf Y. et al. Carotid
stiffness and the risk of new vascular events in
patients with manifest cardiovascular disease. The
SMART study // Eur. Heart J. 2005. V. 26. № 12.
P. 1213–1220.
The aim of this study was to compare two methods for local stiffness assessment of common carotid artery: traditional (manual measurement of diameter in M%mode) and automatic (Echo%Tracking technology). The investigation of 60 common carotid arteries distal fragments showed that mean stiffness values determined by M%mode (βM) significantly lower than that determined by Echo%Tracking technology (βET): 5.90 ± 2.06 and 8.96 ± 3.71 (р 0.001). The significant correlation between stiffness parameters determined by two methods was revealed (r = 0.74, р 0.001). The following regression equations allow to recount the results of arterial wall local stiffness measured by one method and to compare with the second method results (βM = 2.38 + 0.34 × βET; βET = 2.46 + 1.23 × βM). There wasn't significant difference of intra%observer reproducibility of two methods for stiffness assessment (р = 0.8), the coefficient of variation for M%mode and Echo%Tracking technology was 17.7 and 14.4%.
Keywords:
ultrasound diagnostics, M-mode, Echo%Tracking technology, reproducibility, common carotid artery, and stiffness.