Новости | Магазин | Журналы | Контакты | Правила | Доставка | |
Вход Регистрация |
Лекция посвящена возможностям клинического использования показателей деформации миокарда и скручивания левого желудочка. Приводятся данные об изменениях показателей деформации миокарда и скручивания левого желудочка при некоторых физиологических и разнообразных патологических состояниях, таких как гипертрофия желудочков, сердечная недостаточность, инфаркт миокарда, пороки сердца и кардиомиопатии. Обсуждаются вопросы дифференциальной диагностики причи гипертрофии левого желудочка с использованием показателей деформации миокарда. Рассматривается прогностическое значение показателей деформации миокарда и скручивания левого желудочка.
Ключевые слова:
эхокардиография, деформация миокарда, скорость деформации, технология отслеживания пятен, продольная деформация, циркулярная деформация, радиальная деформация, скручивание, допплеровская визуализация
Литература:
1. Kouzu H., Yuda S., Muranaka A. et al. Left ventricular hypertrophy causes different changes in
longitudinal, radial, and circumferential mechanics
in patients with hypertension: a twodimensional
speckle tracking study // J. Am. Soc. Echo
cardiogr. 2011. V. 24. № 2. P. 192–199.
2. Geyer H., Caracciolo G., Abe H. et al. Assessment
of myocardial mechanics using speckle tracking
echocardiography: fundamentals and clinical applications // J. Am. Soc. Echocardiogr. 2010. V. 23.
№ 4. P. 351–369.
3. Takeuchi M., Borden W.B., Nakai H. et al. Reduced
and delayed untwisting of the left ventricle in
patients with hypertension and left ventricular
hypertrophy: a study using twodimensional speck
le tracking imaging // Eur. Heart J. 2007. V. 28.
№22. P. 2756–2762.
4. Palmieri V., Russo C., Palmieri E.A. et al. Changes
in components of left ventricular mechanics under
selective beta1 blockade: insight from traditional
and new technologies in echocardiography // Eur.
J. Echocardiogr. 2009. V. 10. № 6. P. 745–752.
5. Baggish A.L., Yared K., Wang F. et al. The impact
of endurance exercise training on left ventricular
systolic mechanics // Am. J. Physiol. Heart Circ.
Physiol. 2008. V. 295. № 3. P. H1109–H1116.
6. Stefani L., Pedrizzetti G., De Luca A. et al. Realtime evaluation of longitudinal peak systolic strain
(speckle tracking measurement) in left and right
ventricles of athletes // Cardiovasc. Ultrasound.
2009. V. 7. P. 17.
7. Stefani L., Toncelli L., Di Tante V. et al.
Supernormal functional reserve of apical segments
in elite soccer players: an ultrasound speckle track
ing handgrip stress study // Cardiovasc. Ultra
sound. 2008. V. 6. P. 14.
8. George K., Shave R., Oxborough D. et al. Left ventricular wall segment motion after ultraendurance
exercise in humans assessed by myocardial speckle
tracking // Eur. J. Echocardiogr. 2009. V. 10. № 2.
P. 238–243.
9. Zocalo Y., Bia D., Armentano R.L. et al. Assessment of trainingdependent changes in the left ventricle torsion dynamics of professional soccer players
using speckletracking echocardiography // Conf.
Proc. IEEE Eng. Med. Biol. Soc. 2007. V. 2007.
P. 2709–2712.
10. Nottin S., Doucende G., SchusterBeck I. et al.
Alteration in left ventricular normal and shear
strains evaluated by 2Dstrain echocardiography in
the athlete’s heart // J. Physiol. 2008. V. 586.
№19. P. 4721–4733.
11. Zocalo Y., Guevara E., Bia D. et al. A reduction in
the magnitude and velocity of left ventricular torsion may be associated with increased left ventricular efficiency: evaluation by speckletracking
echocardiography // Rev. Esp. Cardiol. 2008. V. 61.
№ 7. P. 705–713.
12. Neilan T.G., TonNu T.T., Jassal D.S. et al.
Myocardial adaptation to shortterm highintensity
exercise in highly trained athletes // J. Am. Soc.
Echocardiogr. 2006. V. 19. № 10. P. 1280–1285.
13. Knebel F., Schimke I., Schroeckh S. et al. Myo
cardial function in older male amateur marathon
runners: assessment by tissue Doppler echocardiography, speckle tracking, and cardiac biomarkers //
J. Am. Soc. Echocardiogr. 2009. V. 22. № 7.
P. 803–809.
14. Blessberger H., Binder T. Two dimensional speckle
tracking echocardiography: clinical applications //
Heart. 2010. V. 96. № 24. P. 2032–2040.
15. Chan J., Hanekom L., Wong C. et al. Differentiation of subendocardial and transmural infarction
using twodimensional strain rate imaging to assess shortaxis and longaxis myocardial function // J.
Am. Coll. Cardiol. 2006. V. 48. № 10. P. 2026–2033.
16. Takeuchi M., Nishikage T., Nakai H. et al. The
assessment of left ventricular twist in anterior wall
myocardial infarction using twodimensional
speckle tracking imaging // J. Am. Soc. Echocardiogr. 2007. V. 20. № 1. P. 36–44.
17. Gjesdal O., Hopp E., Vartdal T. et al. Global longitudinal strain measured by twodimensional speckle tracking echocardiography is closely related to
myocardial infarct size in chronic ischaemic heart
disease // Clin. Sci. (Lond.). 2007. V. 113. № 6.
P. 287–296.
18. Roes S.D., Mollema S.A., Lamb H.J. et al.
Validation of echocardiographic twodimensional
speckle tracking longitudinal strain imaging for
viability assessment in patients with chronic
ischemic left ventricular dysfunction and comparison with contrastenhanced magnetic resonance
imaging // Am. J. Cardiol. 2009. V. 104. № 3.
P. 312–317.
19. Becker M., Hoffmann R., Kuhl H.P. et al. Analysis
of myocardial deformation based on ultrasonic
pixel tracking to determine transmurality in chronic myocardial infarction // Eur. Heart J. 2006.
V. 27. № 21. P. 2560–2566.
20. Choi J.O., Cho S.W., Song Y.B. et al. Longitudinal
2D strain at rest predicts the presence of left main
and three vessel coronary artery disease in patients
without regional wall motion abnormality // Eur.
J. Echocardiogr. 2009. V. 10. № 5. P. 695–701.
21. Ishii K., Suyama T., Imai M. et al. Abnormal
regional left ventricular systolic and diastolic
function in patients with coronary artery disease
undergoing percutaneous coronary intervention:
clinical significance of postischemic diastolic
stunning // J. Am. Coll. Cardiol. 2009. V. 54. № 17.
P. 1589–1597.
22. Bertini M., Mollema S.A., Delgado V. et al. Impact
of time to reperfusion after acute myocardial
infarction on myocardial damage assessed by left
ventricular longitudinal strain // Am. J. Cardiol.
2009. V. 104. № 4. P. 480–485.
23. Park Y.H., Kang S.J., Song J.K. et al. Prognostic
value of longitudinal strain after primary reperfusion therapy in patients with anteriorwall acute
myocardial infarction // J. Am. Soc. Echocardiogr.
2008. V. 21. № 3. P. 262–267.
24. Becker M., Lenzen A., Ocklenburg C. et al. Myocardial deformation imaging based on ultrasonic
pixel tracking to identify reversible myocardial
dysfunction // J. Am. Coll. Cardiol. 2008. V. 51.
№15. P. 1473–1481.
25. Jang J.Y., Woo J.S., Kim W.S. et al. Serial assessment of left ventricular remodeling by measurement of left ventricular torsion using speckle tracking echocardiography in patients with acute myocardial infarction // Am. J. Cardiol. 2010. V. 106. № 7.
P. 917–923.
26. Yoneyama A., Koyama J., Tomita T. et al.
Relationship of plasma braintype natriuretic peptide levels to left ventricular longitudinal function
in patients with congestive heart failure assessed
by strain Doppler imaging // Int. J. Cardiol. 2008.
V. 130. № 1. P. 56–63.
27. Kosmala W., Plaksej R., Strotmann J.M. et al. Progression of left ventricular functional abnormalities
in hypertensive patients with heart failure: an ultrasonic twodimensional speckle tracking study // J.
Am. Soc. Echocardiogr. 2008. V. 21. № 12.
P. 1309–1317.
28. Liu Y.W., Tsai W.C., Su C.T. et al. Evidence of left
ventricular systolic dysfunction detected by automated function imaging in patients with heart fail
ure and preserved left ventricular ejection fraction
// J. Card. Fail. 2009. V. 15. № 9. P. 782–789.
29. Plaksej R., Kosmala W., Frantz S. et al. Relation of
circulating markers of fibrosis and progression of
left and right ventricular dysfunction in hypertensive patients with heart failure // J. Hypertens.
2009. V. 27. № 12. P. 2483–2491.
30. Park S.J., Miyazaki C., Bruce C.J. et al. Left ventricular torsion by twodimensional speckle tracking
echocardiography in patients with diastolic dysfunction and normal ejection fraction // J. Am. Soc.
Echocardiogr. 2008. V. 21. № 10. P. 1129–1137.
31. Cho G.Y., Marwick T.H., Kim H.S. et al. Global
2dimensional strain as a new prognosticator in
patients with heart failure // J. Am. Coll. Cardiol.
2009. V. 54. № 7. P. 618–624.
32. Nahum J., Bensaid A., Dussault C. et al. Impact of
longitudinal myocardial deformation on the prognosis of chronic heart failure patients // Circ.
Cardiovasc. Imaging. 2010. V. 3. № 3. P. 249–256.
33. Stanton T., Leano R., Marwick T.H. Prediction of
allcause mortality from global longitudinal speck
le strain: comparison with ejection fraction and
wall motion scoring // Circ. Cardiovasc. Imaging.
2009. V. 2. № 5. P. 356–364.
34. Voigt J.U., Exner B., Schmiedehausen K. et al.
Strainrate imaging during dobutamine stress echo
cardiography provides objective evidence of inducible ischemia // Circulation. 2003. V. 107. № 16.
P. 2120–2126.
35. Ingul C.B., Stoylen A., Slordahl S.A. et al.
Automated analysis of myocardial deformation
at dobutamine stress echocardiography: an angiographic validation // J. Am. Coll. Cardiol. 2007.
V. 49. № 15. P. 1651–1659.
36. Stoylen A. Strain rate imaging. Cardiac deformation imaging by ultrasound/echocardiography.
Tissue Doppler and Speckle tracking. Режим доступа: // http://folk.ntnu.no/stoylen/strainrate/
index.html#PSS, свободный. Загл. с экрана.
21.10.2011.
37. Nakai H., Takeuchi M., Nishikage T. et al. Sub
clinical left ventricular dysfunction in asympto
matic diabetic patients assessed by twodimensional
speckle tracking echocardiography: correlation with
diabetic duration // Eur. J. Echocardiogr. 2009.
V. 10. № 8. P. 926–932.
38. Shivu G.N., Abozguia K., Phan T.T. et al. Increased left ventricular torsion in uncomplicated type 1
diabetic patients: the role of coronary microvascular function // Diabetes Care. 2009. V. 32. № 9.
P. 1710–1712.
39. Pereira A.M., Delgado V., Romijn J.A. et al.
Cardiac dysfunction is reversed upon successful
treatment of Cushing’s syndrome // Eur. J. Endocrinol. 2010. V. 162. № 2. P. 331–340.
40. Ho E., Brown A., Barrett P. et al. Subclinical
anthracycline and trastuzumabinduced cardiotoxicity in the longterm followup of asymptomatic
breast cancer survivors: a speckle tracking echocardiographic study // Heart. 2010. V. 96. № 9.
P. 701–707.
41. Cheung Y.F., Hong W.J., Chan G.C. et al. Left ventricular myocardial deformation and mechanical
dyssynchrony in children with normal ventricular
shortening fraction after anthracycline therapy //
Heart. 2010. V. 96. № 14. P. 1137–1141.
42. Hare J.L., Brown J.K., Leano R. et al. Use of
myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional
measures in patients undergoing breast cancer
treatment with trastuzumab // Am. Heart J. 2009.
V. 158. № 2. P. 294–301.
43. Poulsen S.H., Sogaard P., NielsenKudsk J.E.,
Egeblad H. Recovery of left ventricular systolic
longitudinal strain after valve replacement in aortic stenosis and relation to natriuretic peptides //
J. Am. Soc. Echocardiogr. 2007. V. 20. № 7.
P. 877–884.
44. Lafitte S., Perlant M., Reant P. et al. Impact of
impaired myocardial deformations on exercise tolerance and prognosis in patients with asymptomatic aortic stenosis // Eur. J. Echocardiogr. 2009.
V. 10. № 3. P. 414–419.
45. Dinh W., Nickl W., Smettan J. et al. Reduced global longitudinal strain in association to increased
left ventricular mass in patients with aortic valve
stenosis and normal ejection fraction: a hybrid
study combining echocardiography and magnetic
resonance imaging // Cardiovasc. Ultrasound.
2010. V. 8. P. 29.
46. Dinh W., Nickl W., Smettan J. et al. Relation of
global longitudinal strain to left ventricular geometry in aortic valve stenosis // Cardiol. J. 2011.
V. 18. № 2. P. 151–156.
47. Donal E., Thebault C., O’Connor K. et al. Impact of
aortic stenosis on longitudinal myocardial deformation during exercise // Eur. J. Echocardiogr. 2011.
V. 12. № 3. P. 235–241.
48. Marcus K.A., de Korte C.L., Feuth T. et al. Ab
normal twodimensional strain echocardiography
findings in children with congenital valvar aortic
stenosis // Ultraschall Med. 2011.
49. Becker M., Kramann R., Dohmen G. et al. Impact of
left ventricular loading conditions on myocardial
deformation parameters: analysis of early and late
changes of myocardial deformation parameters
after aortic valve replacement // J. Am. Soc.
Echocardiogr. 2007. V. 20. № 6. P. 681–689.
50. Marciniak A., Sutherland G.R., Marciniak M. et al.
Myocardial deformation abnormalities in patients
with aortic regurgitation: a strain rate imaging
study // Eur. J. Echocardiogr. 2009. V. 10. № 1.
P. 112–119.
51. Tayyareci Y., Yildirimturk O., Aytekin V. et al.
Subclinical left ventricular dysfunction in asymp
tomatic severe aortic regurgitation patients with
normal ejection fraction: a combined tissue Doppler
and velocity vector imaging study // Echocardiography. 2010. V. 27. № 3. P. 260–268.
52. Mizariene V., Bucyte S., ZaliaduonytePeksiene D.
et al. Left ventricular mechanics in asymptomatic
normotensive and hypertensive patients with aortic
regurgitation // J. Am. Soc. Echocardiogr. 2011.
V. 24. № 4. P. 385–391.
53. Kim M.S., Kim Y.J., Kim H.K. et al. Evaluation of
left ventricular short and longaxis function in
severe mitral regurgitation using 2dimensional
strain echocardiography // Am. Heart J. 2009.
V. 157. № 2. P. 345–351.
54. Lancellotti P., Cosyns B., Zacharakis D. et al.
Importance of left ventricular longitudinal function
and functional reserve in patients with degenerative
mitral regurgitation: assessment by twodimensional speckle tracking // J. Am. Soc. Echocardiogr.
2008. V. 21. № 12. P. 1331–1336.
55. Borg A.N., Harrison J.L., Argyle R.A., Ray S.G. Left
ventricular torsion in primary chronic mitral regurgitation // Heart. 2008. V. 94. № 5. P. 597–603.
56. Sengupta P.P., Mehta V., Arora R. et al. Quantification of regional nonuniformity and paradoxical
intramural mechanics in hypertrophic cardiomy
opathy by high frame rate ultrasound myocardial
strain mapping // J. Am. Soc. Echocardiogr. 2005.
V. 18. № 7. P. 737–742.
57. Butz T., van Buuren F., Mellwig K.P. et al. Two
dimensional strain analysis of the global and
regional myocardial function for the differentiation of pathologic and physiologic left ventricular
hypertrophy: a study in athletes and in patients
with hypertrophic cardiomyopathy // Int. J.
Cardiovasc. Imaging. 2011. V. 27. № 1. P. 91–100.
58. Carasso S., Yang H., Woo A. et al. Systolic myocardial mechanics in hypertrophic cardiomyopathy:
novel concepts and implications for clinical status // J. Am. Soc. Echocardiogr. 2008. V. 21. № 6.
P. 675–683.
59. Popovic Z.B., Kwon D.H., Mishra M. et al. Asso
ciation between regional ventricular function and
myocardial fibrosis in hypertrophic cardiomyopathy assessed by speckle tracking echocardiography
and delayed hyperenhancement magnetic resonance
imaging // J. Am. Soc. Echocardiogr. 2008. V. 21.
№ 12. P. 1299–1305.
60. Paraskevaidis I.A., Panou F., Papadopoulos C.
et al. Evaluation of left atrial longitudinal function
in patients with hypertrophic cardiomyopathy: a tissue Doppler imaging and twodimensional strain
study // Heart. 2009. V. 95. № 6. P. 483–489.
61. Carasso S., Woo A., Yang H. et al. Myocardial
mechanics explains the time course of benefit for
septal ethanol ablation for hypertrophic cardiomyopathy // J. Am. Soc. Echocardiogr. 2008. V. 21.
№5. P. 493–499.
62. Wang J., Buergler J.M., Veerasamy K. et al.
Delayed untwisting: the mechanistic link between
dynamic obstruction and exercise tolerance in
patients with hypertrophic obstructive cardiomyopathy // J. Am. Coll. Cardiol. 2009. V. 54. № 14.
P. 1326–1334.
63. Reddy M., Thatai D., Bernal J. et al. Apical hypertrophic cardiomyopathy: potential utility of Strain
imaging // Eur. J. Echocardiogr. 2008. V. 9. № 4.
P. 560–562.
64. Meluzin J., Spinarova L., Hude P. et al. Left ventricular mechanics in idiopathic dilated cardiomyopathy: systolicdiastolic coupling and torsion //
J. Am. Soc. Echocardiogr. 2009. V. 22. № 5.
P. 486–493.
65. Zeng S., Zhou Q.C., Peng Q.H. et al. Assessment of
regional myocardial function in patients with dilated
cardiomyopathy by velocity vector imaging // Echo
cardiography. 2009. V. 26. № 2. P. 163–170.
66. Popovic Z.B., Grimm R.A., Ahmad A. et al. Longitudinal rotation: an unrecognised motion pattern in
patients with dilated cardiomyopathy // Heart.
2008. V. 94. № 3. P. e11.
67. Di Bella G., Minutoli F., Pingitore A. et al. Endocardial and epicardial deformations in cardiac amyloidosis and hypertrophic cardiomyopathy // Circ.
J. 2011. V. 75. № 5. P. 1200–1208.
68. Tanaka H., Oishi Y., Mizuguchi Y. et al. Contribu
tion of the pericardium to left ventricular torsion
and regional myocardial function in patients with
total absence of the left pericardium // J. Am. Soc.
Echocardiogr. 2008. V. 21. № 3. P. 268–274.
69. Sengupta P.P., Krishnamoorthy V.K., Abhayaratna W.P. et al. Disparate patterns of left ven
tricular mechanics differentiate constrictive pericarditis from restrictive cardiomyopathy // JACC
Cardiovasc. Imaging. 2008. V. 1. № 1. P. 29–38.
70. Sengupta P.P., Eleid M.F., Sundt T.M. et al. Regional variability of pericardial thickness influences
left ventricular diastolic recoil mechanics in constrictive pericarditis // J. Am. Soc. Echocardiogr.
2008. V. 21. P. 518.
71. Lim P., Buakhamsri A., Popovic Z.B. et al. Longi
tudinal strain delay index by speckle tracking imaging: a new marker of response to cardiac resynchronization therapy // Circulation. 2008. V. 118. № 11.
P. 1130–1137.
72. Gorcsan J. 3rd, Tanabe M., Bleeker G.B. et al.
Combined longitudinal and radial dyssynchrony predicts ventricular response after resynchronization
therapy // J. Am. Coll. Cardiol. 2007. V. 50. № 15.
P. 1476–1483.
73. Delgado V., Ypenburg C., Zhang Q. et al. Changes
in global left ventricular function by multidirectional strain assessment in heart failure patients under
going cardiac resynchronization therapy // J. Am.
Soc. Echocardiogr. 2009. V. 22. № 6. P. 688–694.
74. Lancellotti P., Senechal M., Moonen M. et al. Myo
cardial contractile reserve during exercise predicts
left ventricular reverse remodelling after cardiac
resynchronization therapy // Eur. J. Echocardiogr.
2009. V. 10. № 5. P. 663–668.
75. Bertini M., Marsan N.A., Delgado V. et al. Effects
of cardiac resynchronization therapy on left ventricular twist // J. Am. Coll. Cardiol. 2009. V. 54.
№14. P. 1317–1325.
76. Bertini M., Delgado V., Nucifora G. et al. Effect of
cardiac resynchronization therapy on subendo and
subepicardial left ventricular twist mechanics and
relation to favorable outcome // Am. J. Cardiol.
2010.V. 106. № 5. P. 682–687.
77. Meris A., Faletra F., Conca C. et al. Timing and
magnitude of regional right ventricular function:
a speckle trackingderived strain study of normal
subjects and patients with right ventricular dysfunction // J. Am. Soc. Echocardiogr. 2010. V. 23.
№ 8. P. 823–831.
78. Morris D.A., Gailani M., Vaz Perez A. et al. Right
ventricular myocardial systolic and diastolic dysfunction in heart failure with normal left ventricular ejection fraction // J. Am. Soc. Echocardiogr.
2011. V. 24. № 8. P. 886–897.
79. D’Andrea A., Caso P., Bossone E. et al. Right ven
tricular myocardial involvement in either physiological or pathological left ventricular hypertrophy: an
ultrasound speckletracking twodimensional strain
analysis // Eur. J. Echocardiogr. 2010. V. 11. № 6.
P. 492–500.
80. Pirat B., McCulloch M.L., Zoghbi W.A. Evaluation
of global and regional right ventricular systolic
function in patients with pulmonary hypertension
using a novel speckle tracking method // Am. J.
Cardiol. 2006. V. 98. № 5. P. 699–704.
81. Sugiura E., Dohi K., Onishi K. et al. Reversible
right ventricular regional nonuniformity quantified
by speckletracking strain imaging in patients with
acute pulmonary thromboembolism // J. Am. Soc.
Echocardiogr. 2009. V. 22. № 12. P. 1353–1359.
82. Kowalik E., Kowalski M., Hoffman P. Is right ven
tricular myocardial deformation affected by degree
of interatrial shunt in adults? // Eur. J. Echocardiogr. 2011. V. 12. № 5. P. 400–405.
83. Jategaonkar S.R., Scholtz W., Butz T. et al. Two
dimensional strain and strain rate imaging of the
right ventricle in adult patients before and after
perc
Clinical value of left ventricle myocardium strain and torsion measurements is described in the lecture. Changes of left ventricle myocardium strain and torsion data at some physiological and different pathologic situations as a ventricle hypertrophy, heart failure, myocardial infarction, congenital heart disease, and cardiomyopathy are represented. Differential diagnosis questions of the left ventricle hypertrophy reasons with the myocardium strain measurements use are discussed. Prognostic value of left ventricle myocardium strain and torsion measurements is showed.
Keywords:
echocardiography, myocardium strain, strain rate, speckle tracking, longitudinal strain, circumferential strain, radial strain, torsion (twist), and tissue Doppler imaging.