Новости | Магазин | Журналы | Контакты | Правила | Доставка | |
Вход Регистрация |
В обзоре представлены диагностические возможности спекл-трекинг эхокардиографии (speckle tracking echocardio graphy) для оценки систоло-диастолической функции левого желудочка при ишемической болезни сердца с учетом особенностей строения миокарда. Спиральное строение миокарда и взаимодействие разнонаправленных волокон левого желудочка усложняют задачу оценки регионарной и глобальной сократимости левого желудочка. Спекл-трекинг эхокардиография позволяет измерить деформацию миокарда в продольном, циркулярном и радиальном направлениях. Обсуждается клиническое использование метода при наиболее опасных формах ишемической болезни сердца: остром инфаркте миокарда и нестабильной стенокардии. Спекл-трекинг эхокардиография позволяет выявлять компенсаторное увеличение деформации интактного миокарда, а также ротации левого желудочка при нарушениях локальной сократимости. Измерение глобальных значений деформации, скручивания и раскручивания левого желудочка представляет прогностическую информацию у больных с острым инфарк том миокарда и нестабильной стенокардией. Несмотря на преимущества, существуют препятствия, затрудняющие использование данного метода в клинической практике. Основные из них - качество ультразвукового изображения и отсутствие общепринятых нормативных значений величин деформации.
Ключевые слова:
спекл-трекинг эхокардиография, продольная деформация, циркулярная деформация, радиальная деформация, левый желудочек, ишемическая болезнь сердца, speckle tracking echocardiography, longitudinal strain, circumferential strain, radial strain, left ventricle, coronary heart disease
Литература:
1.Hensel K.O., Wilke L., Heusch A. Transthoracic speckle tracking echocardiography for the quantitative assessment of left ventricular myocardial deformation. J. Vis. Exp. 2016; 116 е: 54736. https://doi.org/10.3791/54736
2.Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F.A., Foster E., Goldstein S.A., Kuznetsova T., Lancellotti P., Muraru D., Picard M.H., Rietzschel E.R., Rudski L., Spencer K.T., Tsang W., Voigt J.U. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015; 28 (1): 1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003
3.Xie M.Y., Yin J.B., Lv Q., Wang J. Assessment of the left ventricular systolic function in multi-vessel coronary artery disease with normal wall motion by two-dimensional speckle tracking echocardiography. Eur. Rev. Med. Pharmacol. Sci. 2015; 19 (20): 3928-3934.
4.Liu J.H., Chen Y., Yuen M., Zhen Z., Chan C.W., Lam K.S., Tse H.F., Yiu K.H. Incremental prognostic value of global longitudinal strain in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2016; 15: 22. https://doi.org/10.1186/s12933-016-0333-5
5.Madry W., Karolczak M.A. Physiological basis in the assessment of myocardial mechanics using speckle-tracking echocardiography 2D. Part I. J. Ultrason. 2016; 16 (65): 135-144. https://doi.org/10.15557/jou.2016.0015
6.Madry W., Karolczak M.A. Physiological basis in the assessment of myocardial mechanics using speckle-tracking echocardiography 2D. Part II. J. Ultrason. 2016; 16 (66): 304--316. https://doi.org/10.15557/jou.2016.0031
7.Muraru D., Niero A., Rodriguez-Zanella H., Cherata D., Badano L. Three-dimensional speckletracking echocardiography: benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc. Diagn. Ther. 2018; 8 (1): 101-117. https://doi.org/10.21037/cdt.2017.06.01
8.Lang R.M., Addetia K., Narang A., Mor-Avi V. 3-Dimensional echocardiography: latest developments and future directions. JACC Cardiovasc. Imaging. 2018; 11 (12): 1854-1878. https://doi.org/10.1016/j.jcmg.2018.06.024
9.Levy P.T., Machefsky A., Sanchez A.A., Patel M.D., Rogal S., Fowler S., Yaeger L., Hardi A., Holland M.R., Hamvas A., Singh G.K. Reference ranges of left ventricular strain measures by twodimensional speckle-tracking echocardiography in children: a systematic review and meta-analysis. J. Am. Soc. Echocardiogr. 2016; 29 (3): 209-225.e6. https://doi.org/10.1016/j.echo.2015.11.016
10.Mirea O., Pagourelias E.D., Duchenne J., Bogaert J., Thomas J.D., Badano L.P., Voigt J.U.; EACVI-ASE-Industry Standardization Task Force. Variability and reproducibility of segmental longitudinal strain measurement: a report from the EACVI-ASE Strain Standardization Task Force. JACC Cardiovasc. Imaging. 2018; 11 (1): 15-24. https://doi.org/10.1016/j.jcmg.2017.01.027
11.Mirea O., Corici O.M., Berceanu M., Donoiu I., Militaru C., Istratoaie O. Variability of longitudinal strain measurements: levelling the playing field. Acta Cardiol. 2019; 74 (3): 188-197. https://doi.org/10.1080/00015385.2018.1480469
12.Voigt J.U., Cvijic M. 2- and 3-Dimensional myocardial strain in cardiac health and disease. JACC Cardiovasc. Imaging. 2019; 12 (9): 1849-1863. https://doi.org/10.1016/j.jcmg.2019.01.044
13.Kihlberg J., Haraldsson H., Sigfridsson A., Ebbers T., Engvall J.E. Clinical experience of strain imaging using DENSE for detecting infarcted cardiac segments. J. Cardiovasc. Magn. Reson. 2015; 17 (1): 50. https://doi.org/10.1186/s12968-015-0155-8
14.Kim J., Rodriguez-Diego S., Srinivasan A., Brown R.M., Pollie M.P., Di Franco A., Goldburg S.R., Siden J.Y., Ratcliffe M.B., Levine R.A., Devereux R.B., Weinsaft J.W. Echo cardio graphyquantified myocardial strain-a marker of global and regional infarct size that stratifies likelihood of left ventricular thrombus. Echocardio graphy. 2017; 34 (11): 1623-1632. https://doi.org/10.1111/echo.13668
15.Sutherland G.R., Hatle L., Rademakers F.E. Doppler myocardial imaging. Leuven University Press, 2003. 99 p.
16.Nagata Y., Wu V.C., Otsuji Y., Takeuchi M. Normal range of myocardial layer-specific strain using two-dimensional speckle tracking echocardiography. PLoS One. 2017; 12 (6): e0180584. https://doi.org/10.1371/journal.pone.0180584
17.Hoffman J.I.E. Will the real ventricular architecture please stand up? Physiol. Rep. 2017; 5 (18): e13404. https://doi.org/10.14814/phy2.13404
18.Torrent-Guasp F., Kocica M.J., Corno A.F., Komeda M., Carreras-Costa F., Flotats A., Cosin-Aguillar J., Wen H. Towards new understanding of the heart structure and function. Eur. J. Cardiothorac. Surg. 2005; 27: 191-201. https://doi.org/10.1016/j.ejcts.2004.11.026
19.Buckberg G.D., Nanda N.C., Nguyen C., Kocica M.J. What is the heart? Anatomy, function, pathophysiology, and misconceptions. J. Cardiovasc. Dev. Dis. 2018; 5 (2): 33. https://doi.org/10.3390/jcdd5020033
20.Mora V., Roldan I., Romero E., Sauri A., Romero D., Perez-Gozalbo J., Ugalde N., Bertolin J., Rodriguez-Israel M., Delgado C.P., Lowen stein J.A. Myocardial сontraction during the diastolic isovolumetric period: analysis of longitudinal strain by means of speckle tracking echocardiography. J. Cardiovasc. Dev. Dis. 2018; 5 (3): 41. https://doi.org/10.3390/jcdd5030041
21.Kocabay G., Muraru D., Peluso D., Cucchini U., Mihaila S., Padayattil-Jose S., Gentian D., Iliceto S., Vinereanu D., Badano L.P. Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Rev. Esp. Cardiol. (Engl. Ed.). 2014; 67 (8): 651-658. https://doi.org/10.1016/j.rec.2013.12.009
22.Anderson R.H., Lunkenheimer P.P., Jarvis J.J., Stephenson R., MacIver D.H., Agger P. Assessment of the helical ventricular myocardial band using standard echocardiography. Echocardiography. 2015; 32 (10): 1601-1602. https://doi.org/10.1111/echo.13031
23.Nakatani S. Left ventricle rotation and twist: why should we learn? J. Cardiovasc. Ultrasound. 2011; 19 (l): 1-6.https://doi.org/10.4250/jcu.2011.19.1.1
24.Omar A.M., Bansal M., Sengupta P.P. Advances in echocardiographic imaging in heart failure with reduced and preserved ejection fraction. Circ. Res. 2016; 119 (2): 357-374. https://doi.org/10.1161/circresaha.116.309128
25.Павлюкова Е.Н., Кужель Д.А., Матюшин Г.В., Савченко Е.А., Филиппова С.А. Ротация, скручивание и раскручивание левого желудочка: физиологическая роль и значение в клинической практике. Рациональная фармакотерапия в кардиологии. 2015; 11 (1): 68-78. https://doi.org/10.20996/1819-6446-2015-11-1-68-78
26.Norum I.B., Ruddox V., Edvardsen T., Otterstad J.E. Diagnostic accuracy of left ventricular longitudinal function by speckle tracking echocardiography to predict significant coronary artery stenosis. BMC Med. Imaging. 2015; 25 (15): 25. https://doi.org/10.1186/s12880-015-0067-y
27.Ballester M., Ferreira A., Carreras F. The myocardial band. Heart Fail. Clin. 2008; 4 (3): 261-272. https://doi.org/10.1016/j.hfc.2008.02.011
28.Esch B.T., Warburton D.E. Left ventricular torsion and recoil: implications for exercise performance and cardiovascular disease. J. Appl. Physiol. (1985). 2009; 106 (2): 362-329. https://doi.org/10.1152/japplphysiol.00144.2008
29.Brainin P., Skaarup K.G., Iversen A.Z., Jorgensen P.G., Platz E., Jensen J.S., Biering-Sorensen T. Post-systolic shortening predicts heart failure following acute coronary syndrome. Int. J. Cardiol. 2019; 276: 191-197. https://doi.org/10.1016/j.ijcard.2018.11.106
30.Brainin P., Biering-Sorensen S.R., Mogelvang R., Sogaard P., Jensen J.S., Biering-Sorensen T. Postsystolic shortening by speckle tracking echocardiography is an independent predictor of cardiovascular events and mortality in the general population. J. Am. Heart Assoc. 2018; 7 (6): e008367. https://doi.org/10.1161/jaha.117.008367
31.Алехин М.Н., Степанова А.И. Эхокардиография в оценке постсистолического укорочения миокарда левого желудочка сердца. Кардиология. 2020; 60 (12): 110-116. https://doi.org/10.18087/cardio.2020.12.n1087
32.Joyce E., Hoogslag G.E., Kamperidis V., Debonnaire P., Katsanos S., Mertens B., Marsan N.A., Bax J.J., Delgado V. Relationship between myocardial function, body mass index, and outcome after ST-segment-elevation myocardial infarction. Circ. Cardiovasc. Imaging. 2017; 10 (7): e005670. https://doi.org/10.1161/circimaging.116.005670
33.Elias J., van Dongen I.M., Hoebers L.P., Ouweneel D.M., Claessen B.E.P.M., Ramunddal T., Laanmets P., Eriksen E., Piek J.J., van der Schaaf R.J., Ioanes D., Nijveldt R., Tijssen J.G., Henriques J.P.S., Hirsch A.; EXPLORE investigators. Recovery and prognostic value of myocardial strain in ST-segment elevation myocardial infarction patients with a concurrent chronic total occlusion. Eur. Radiol. 2020; 30 (1): 600-608. https://doi.org/10.1007/s00330-019-06338-x
34.Edvardsen T., Haugaa K.H. Strain echocardiography: from variability to predictability. JACC Cardiovasc. Imaging. 2018; 11 (1): 35-37. https://doi.org/10.1016/j.jcmg.2017.03.012
35.Badano L.P., Muraru D. The good, the bad, and the ugly of using left ventricular longitudinal myocardial deformation by speckle-tracking echocardiography to assess patients after an acute myocardial infarction. Circ. Cardiovasc. Imaging. 2017; 10 (7): e006693. https://doi.org/10.1161/circimaging.117.006693
36.Caspar T., Samet H., Ohana M., Germain P., El Ghan nudi S., Talha S., Morel O., Ohlmann P. Longitudinal 2D strain can help diagnose coronary artery disease in patients with suspected non-STelevation acute coronary syndrome but apparent normal global and segmental systolic function. Int. J. Cardiol. 2017; 236: 91-94. https://doi.org/10.1016/j.ijcard.2017.02.068
37.Santos N.S.S.D., Vilela A.A., Barretto R.B.M.,Vale M.P.D., Rezende M.O., Ferreira M.C., Andrade A.J.A., Scorsioni N.H.G., Queiroga O.X., Bihan D.L. Applicability of longitudinal strain of left ventricle in unstable angina. Arq. Bras. Cardiol. 2018; 110 (4): 354-361. https://doi.org/10.5935/abc.20180062
38.Y?lmaztepe M.A., Ucar F.M. Layer-specific strain analysis in patients with suspected stable angina pectoris and apparently normal left ventricular wall motion. Cardiovasc. Ultrasound. 2018; 16 (1): 25. https://doi.org/10.1186/s12947-018-0144-9
39.Collet J.P., Thiele H., Barbato E., Barthelemy O., Bauersachs J., Bhatt D.L., Dendale P., Dorobantu M., Edvardsen T., Folliguet T., Gale C.P., Gilard M., Jobs A., Juni P., Lambrinou E., Lewis B.S., Mehilli J., Meliga E., Merkely B., Mueller C., Roffi M., Rutten F.H., Sibbing D., Siontis G.C.M.; ESC Scientific Document Group. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021; 42 (14): 1289-1367. https://doi.org/10.1093/eurheartj/ehaa575
40.Dahlslett T., Karlsen S., Grenne B., Eek C., Sjoli B., Skulstad H., Smiseth O.A., Edvardsen T., Brunvand H. Early assessment of strain echocardiography can accurately exclude significant coronary artery stenosis in suspected non-ST-segment elevation acute coronary syndrome. J. Am. Soc Echocardiogr. 2014; 27 (5): 512-519. https://doi.org/10.1016/j.echo.2014.01.019
41.Feijao A., Pereira S.V., Morais H. Difficulties and pitfalls in performing speckle-tracking echocardiography to assess left ventricular systolic function. EC Cardiology. 2020; 7 (8): 30-35. https://ecronicon.com/eccy/pdf/ECCY-07-00731.pdf
42.Farsalinos K.E., Daraban A.M., Unlu S., Thomas J.D., Badano L.P., Voigt J.U. Head-tohead comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE inter-vendor comparison study. J. Am. Soc. Echocardiogr. 2015; 28 (10): 1171-1181. https://doi.org/10.1016/j.echo.2015.06.011
43.Biering-Sorensen T., Jensen J.S., Pedersen S.H., Galatius S., Fritz-Hansen T., Bech J., Olsen F.J., Mogelvang R. Regional longitudinal myocardial deformation provides incremental prognostic information in patients with ST-segment elevation myocardial infarction. PLoS One. 2016; 11 (6): e0158280. https://doi.org/10.1371/journal.pone.0158280
44.Moharram M.A., Lamberts R.R., Whalley G., Williams M.J.A., Coffey S. Myocardial tissue characterisation using echocardiographic deformation imaging. Cardiovasc. Ultrasound. 2019; 17 (1): 27. https://doi.org/10.1186/s12947-019-0176-9
45.Pastore M.C., De Carli G., Mandoli G.E., D’Ascenzi F., Focardi M., Contorni F., Mondillo S., Cameli M. The prognostic role of speckle tracking echocardiography in clinical practice: evidence and reference values from the literature. Heart Fail. Rev. 2020. https://doi.org/10.1007/s10741-020-09945-9
46.Павлюкова Е.Н., Трубина Е.В., Карпов Р.С. Ротация, скручивание и поворот по оси левого желудочка у больных ишемической и дилатационной кардиомиопатией. Ультразвуковая и функциональная диагностика. 2013; 1: 44-53.
47.Fazlinejad A., Samadzade A., Khameneh Bagheri R., Tousi N., Rezaeian A. Does global longitudinal speckle-tracking strain predict left ventricular remodeling in patients with myocardial infarction? a systematic review. Rev. Clin. Med. 2016; 3 (3): 111-116. https://doi.org/10.17463/RCM.2016.03.005
48.Xu L., Huang X., Ma J., Huang J., Fan Y., Li H., Qiu J., Zhang H., Huang W. Value of three-dimensional strain parameters for predicting left ventricular remodeling after ST-elevation myocardial infarction. Int. J. Cardiovasc. Imaging. 2017; 33 (5): 663-673. https://doi.org/10.1007/s10554-016-1053-3
49.Cheng S., McCabe E.L., Larson M.G., Merz A.A., Osypiuk E., Lehman B.T., Stantchev P., Aragam J., Solomon S.D., Benjamin E.J., Vasan R.S. Distinct aspects of left ventricular mechanical function are differentially associated with cardiovascular outcomes and all-cause mortality in the community. J. Am. Heart Assoc. 2015; 4 (10): e002071. https://doi.org/10.1161/jaha.115.002071
50.Al Saikhan L., Park C., Hardy R., Hughes A. Prognostic implications of left ventricular strain by speckle-tracking echocardiography in the general population: a meta-analysis. Vasc. Health Risk Manag. 2019; 15: 229-251. https://doi.org/10.2147/vhrm.s206747
51.Unlu S., Mirea O., Pagourelias E.D., Duchenne J., Bezy S., Bogaert J., Thomas J.D., Badano L.P., Voigt J.U.; EACVI-ASE-Industry Standardization Task Force. Layer-specific segmental longitudinal strain measurements: capability of detecting myocardial scar and differences in feasibility, accuracy, and reproducibility, among four vendors a report from the EACVI-ASE Strain Standardization Task Force. J. Am. Soc. Echocardiogr. 2019; 32 (5): 624-632.e11. https://doi.org/10.1016/j.echo.2019.01.010
52.Alcidi G.M., Esposito R., Evola V., Santoro C., Lembo M., Sorrentino R., Lo Iudice F., Borgia F., Novo G., Trimarco B., Lancellotti P., Galderisi M. Normal reference values of multilayer longitudinal strain according to age decades in a healthy population: a single-centre experience. Eur. Heart J. Cardiovasc. Imaging. 2018; 19 (12): 1390-1396. https://doi.org/10.1093/ehjci/jex306
53.Scharrenbroich J., Hamada S., Keszei A., Schroder J., Napp A., Almalla M., Becker M., Altiok E. Use of two-dimensional speckle tracking echocardiography to predict cardiac events: comparison of patients with acute myocardial infarction and chronic coronary artery disease. Clin. Cardiol. 2018; 41 (1): 111-118. https://doi.org/10.1002/clc.22860
54.Shi J., Pan C., Kong D., Cheng L., Shu X. Left ventricular longitudinal and circumferential layerspecific myocardial strains and their determinants in healthy subjects. Echocardiography. 2016; 33 (4): 510-518. https://doi.org/10.1111/echo.13132
55.Sun M., Dong Y., Wang Y., Li G., Huang D. Assessment of the left ventricular function in patients with uremia using layer-specific 2-dimensional speckle tracking echocardiography. Medicine (Baltimore). 2019; 98 (9): e14656. https://doi.org/10.1097/md.0000000000014656
56.Biering-Sorensen T., Biering-Sorensen S.R., Olsen F.J., Sengelov M., Jorgensen P.G., Mogelvang R., Shah A.M., Jensen J.S. Global longitudinal strain by echocardiography predicts longterm risk of cardiovascular morbidity and mortality in a low-risk general population: the Copenhagen City Heart Study. Circ. Cardiovasc. Imaging. 2017; 10 (3): e005521. https://doi.org/10.1161/circimaging.116.005521
57.Stankovic I., Putnikovic B., Cvjetan R., Milicevic P., Panic M., Kalezic-Radmili T., Mandaric T., Vidakovic R., Cvorovic V., Neskovic A.N. Visual assessment vs. strain imaging for the detection of critical stenosis of the left anterior descending coronary artery in patients without a history of myocardial infarction. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (4): 402-409. https://doi.org/10.1093/ehjci/jeu206
58.Gozdzik A., Letachowicz K., Grajek B.B., Plonek T., Obremska M., Jasinski M., Gozdzik W. Application of strain and other echocardiographic parameters in the evaluation of early and long-term clinical outcomes after cardiac surgery revascularization. BMC Cardiovasc Disord. 2019; 19 (1): 189. https://doi.org/10.1186/s12872-019-1162-8
59.Park S.J., Park J.H., Lee H.S., Kim M.S., Park Y.K., Park Y., Kim Y.J., Lee J.H., Choi S.W., Jeong J.O., Kwon I.S., Seong I.W. Impaired RV global longitudinal strain is associated with poor long-term clinical outcomes in patients with acute inferior STEMI. JACC Cardiovasc. Imaging. 2015; 8 (2): 161-169. https://doi.org/10.1016/j.jcmg.2014.10.011
60.Garcia-Martin A., Moya-Mur J.L., Carbonell-San Roman S.A., Garcia-Lledo A., Navas-Tejedor P., Muriel A., Rodriguez-Munoz D., Casas-Rojo E., Jimenez-Nacher J.J., Fernandez-Golfin C., Zamorano J.L. Four chamber right ventricular longitudinal strain versus right free wall longitudinal strain. Prognostic value in patients with left heart disease. Cardiol. J. 2016; 23 (2): 189-194. https://doi.org/10.5603/cj.a2015.0079
61.Xie M.Y., Lv Q., Wang J., Yin J.B. Assessment of myocardial segmental function with coronary artery stenosis in multi-vessel coronary disease patients with normal wall motion. Eur. Rev. Med. Pharmacol. Sci. 2016; 20 (8): 1582-1589. www.europeanreview.org/article/10679
62.Yagmur J., Ac?kgoz N., Cansel M., Ermis N., Karakus Y., Kurtoglu E. Assessment of the left ventricular systolic function in cardiac syndrome X using speckle tracking echocardiography. Anatol. J. Cardiol. 2016; 16 (6): 419-423. https://doi.org/10.5152/anatoljcardiol.2015.6388
63.Huttin O., Coiro S., Selton-Suty C., Juilliere Y., Donal E., Magne J., Sadoul N., Zannad F., Rossignol P., Girerd N. Prediction of left ventricular remodeling after a myocardial infarction: role of myocardial deformation: a systematic review and meta-analysis. PLoS One. 2016; 11 (12): e0168349. https://doi.org/10.1371/journal.pone.0168349
64.Hubbard R.T., Arciniegas Calle M.C., Barros-Gomes S., Kukuzke J.A., Pellikka P.A., Gulati R., Villarraga H.R. 2-Dimensional speckle tracking echocardiography predicts severe coronary artery disease in women with normal left ventricular function: a case-control study. BMC Cardiovasc. Disord. 2017; 17 (1): 231. https://doi.org/10.1186/s12872-017-0656-5
65.Mele D., Trevisan F., D’Andrea A., Luisi G.A., Smarrazzo V., Pestelli G., Flamigni F., Ferrari R. Speckle tracking echocardiography in non-ST-segment elevation acute coronary syndromes. Curr. Probl. Cardiol. 2021; 46 (3): 100418. https://doi.org/10.1016/j.cpcardiol.2019.03.007
66.Liu K., Wang Y., Hao Q., Li G., Chen P., Li D. Evaluation of myocardial viability in patients with acute myocardial infarction: layer-specific analysis of 2-dimensional speckle tracking echocardiography. Medicine (Baltimore). 2019; 98 (3): e13959. https://doi.org/10.1097/md.0000000000013959
67.Luis S.A., Yamada A., Khandheria B.K., Speranza V., Benjamin A., Ischenko M., Platts D.G., Hamilton-Craig C.R., Haseler L., Burstow D.,Chan J. Use of three-dimensional speckle-tracking echocardiography for quantitative assessment of global left ventricular function: a comparative study to three-dimensional echocardiography. J. Am. Soc. Echocardiogr. 2014; 27 (3): 285-291. https://doi.org/10.1016/j.echo.2013.11.002
68.Radwan H., Hussein E. Value of global longitudinal strain by two-dimensional speckle tracking echocardiography in predicting coronary artery disease severity. Egypt. Heart J. 2017; 69 (2): 95-101. https://doi.org/10.1016/j.ehj.2016.08.001
69.Liu C., Li J., Ren M., Wang Z.Z., Li Z.Y., Gao F., Tian J.W. Multilayer longitudinal strain at rest may help to predict significant stenosis of the left anterior descending coronary artery in patients with suspected non-ST-elevation acute coronary syndrome. Int. J. Cardiovasc. Imaging. 2016; 32 (12): 1675-1685. https://doi.org/10.1007/s10554-016-0959-0
70.Cai Z., Dai J., Wu D., Qiu J., Ma J., Li G., Zhu W., Lei H., Huang W., Zhang H., Xu L. The value of 3-dimensional longitudinal strain in the evaluation of complex coronary lesions in non-ST-segment elevation acute coronary syndrome patient. Medicine (Baltimore). 2016; 95 (39): e4667. https://doi.org/10.1097/md.0000000000004667
71.Nishi T., Funabashi N., Ozawa K., Takahara M., Fujimoto Y., Kamata T., Kobayashi Y. Resting multilayer 2D speckle-tracking transthoracic echocardiography for the detection of clinically stable myocardial ischemic segments confirmed by invasive fractional flow reserve. Part 1: vessel-by-vessel analysis. Int. J. Cardiol. 2016; 218: 324-332. https://doi.org/10.1016/j.ijcard.2016.05.016
72.Rumbinaite E., Zaliaduonyte-Peksiene D., Lapinskas T., Zvirblyte R., Karuzas A., Jonauskiene I., Viezelis M., Ceponiene I., Gustiene O., Slapikas R., Vaskelyte J.J. Early and late diastolic strain rate vs global longitudinal strain at rest and during dobutamine stress for the assessment of significant coronary artery stenosis in patients with a moderate and high probability of coronary artery disease. Echocardiography. 2016; 33 (10): 1512-1522. https://doi.org/10.1111/echo.13282
73.Liou K., Negishi K., Ho S., Russell E.A., Cranney G., Ooi S.Y. Detection of obstructive coronary artery disease using peak systolic global longitudinal strain derived by two-dimensional speckletracking: a systematic review and meta-analysis. J. Am. Soc. Echocardiogr. 2016; 29 (8): 724-735. https://doi.org/10.1016/j.echo.2016.03.002
74.Mahjoob M.P., Alipour Parsa S., Mazarei A., Safi M., Khaheshi I., Esmaeeli S. Rest 2D speckle tracking echocardiography may be a sensitive but nonspecific test for detection of significant coronary artery disease. Acta Biomed. 2018; 88 (4): 457-461. https://doi.org/10.23750/abm.v88i4.5445
75.Hagemann C.E., Hoffmann S., Olsen F.J., Jorgensen P.G., Fritz-Hansen T., Jensen J.S., Biering-Sorensen T. Layer-specific global longitudinal strain reveals impaired cardiac function in patients with reversible ischemia. Echocardiography. 2018; 35 (5): 632-642. https://doi.org/10.1111/echo.13830
76.Tarascio M., Leo L.A., Klersy C., Murzilli R., Moccetti T., Faletra F.F. Speckle-tracking layerspecific analysis of myocardial deformation and evaluation of scar transmurality in chronic ischemic heart disease. J. Am. Soc. Echocardiogr. 2017; 30 (7): 667-675. https://doi.org/10.1016/j.echo.2017.03.015
77.Lassen M.C.H., Skaarup K.G., Iversen A.Z., Jorgensen P.G., Olsen F.J., Galatius S., Biering-Sorensen T. Ratio of transmitral early filling velocity to early diastolic strain rate as a predictor of cardiovascular morbidity and mortality following acute coronary syndrome. Am. J. Cardiol. 2019; 123 (11): 1776-1782. https://doi.org/10.1016/j.amjcard.2019.03.004
78.Kowalczyk E., Kasprzak J.D., Wejner-Mik P., Wdowiak-Okrojek K., Lipiec P. Diagnostic utility of two-dimensional speckle tracking echocardiography to identify ischemic etiology of left ventricular systolic dysfunction. Echocardiography. 2019; 36 (4): 702-706. https://doi.org/10.1111/echo.14312
79.Favot M., Courage C., Ehrman R., Khait L., Levy P. Strain echocardiography in acute cardiovascular diseases. West. J. Emerg Med. 2016; 17 (1): 54-60. https://doi.org/10.5811/westjem.2015.12.28521
80.Brainin P., Haahr-Pedersen S., Sengelov M.,Olsen F.J., Fritz-Hansen T., Jensen J.S., Biering-Sorensen T. Presence of post-systolic shortening is an independent predictor of heart failure in patients following ST-segment elevation myocardial infarction. Int. J. Cardiovasc. Imaging. 2018; 34 (5): 751-760. https://doi.org/10.1007/s10554-017-1288-7
81.Rostamzadeh A., Shojaeifard M., Rezaei Y., Dehghan K. Diagnostic accuracy of myocardial deformation indices for detecting high risk coronary artery disease in patients without regional wall motion abnormality. Int. J. Clin. Exp. Med. 2015; 8 (6): 9412-9420.
82.Skaarup K.G., Iversen A., Jorgensen P.G., Olsen F.J., Grove G.L., Jensen J.S., Biering-Sorensen T. Association between layer-specific global longitudinal strain and adverse outcomes following acute coronary syndrome. Eur. Heart J. Cardiovasc. Imaging. 2018; 19 (12): 1334-1342. https://doi.org/10.1093/ehjci/jey004
83.Wang P., Liu Y., Ren L. Evaluation of left ventricular function after percutaneous recanalization of chronic coronary occlusions: the role of twodimensional speckle tracking echocardiography. Herz. 2019; 44 (2): 170-174. https://doi.org/10.1007/s00059-017-4663-1
84.Karlsen S., Dahlslett T., Grenne B., Sjoli B., Smiseth O., Edvardsen T., Brunvand H. Global longitudinal strain is a more reproducible measure of left ventricular function than ejection fraction regardless of echocardiographic training. Cardiovasc. Ultrasound. 2019; 17 (1): 18. https://doi.org/10.1186/s12947-019-0168-9
85.Biering-Sorensen T., Olsen F.J., Storm K., Fritz-Hansen T., Olsen N.T., Jons C., Vinther M., Sogaard P., Risum N. Prognostic value of tissue Doppler imaging for predicting ventricular arrhythmias and cardiovascular mortality in ischaemic cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging. 2016; 17 (7): 722-731. https://doi.org/10.1093/ehjci/jew066
86.Cha M.J., Kim H.S., Kim S.H., Park J.H., Cho G.Y. Prognostic power of global 2D strain according to left ventricular ejection fraction in patients with ST elevation myocardial infarction. PLoS One. 2017; 12 (3): e0186437. https://doi.org/10.1371/journal.pone.0174160
87.Atici A., Barman H.A., Durmaz E., Demir K., Cakmak R., Tugrul S., Elitok A., Onur I., Sahin I., Oncul A. Predictive value of global and territorial longitudinal strain imaging in detecting significant coronary artery disease in patients with myocardial infarction without persistent ST-segment elevation. Echocardiography. 2019; 36 (3): 512-520. https://doi.org/10.1111/echo.14275
88.Milewska A., Minczykowski A., Krauze T., Piskorski J., Heathers J., Szczepanik A., Banaszak A., Guzik P., Wykretowicz A. Prognosis after acute coronary syndrome in relation with ventricular-arterial coupling and left ventricular strain. Int. J. Cardiol. 2016; 220: 343-348. https://doi.org/10.1016/j.ijcard.2016.06.173
89.Smiseth O.A., Torp H., Opdahl A., Haugaa K.H., Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? Eur. Heart J. 2016; 37 (15): 1196-1207. https://doi.org/10.1093/eurheartj/ehv529
90.Eitel I., Stiermaier T., Lange T., Rommel K.P., Koschalka A., Kowallick J.T., Lotz J., Kutty S., Gutberlet M., Hasenfub G., Thiele H., Schuster A. Cardiac magnetic resonance myocardial feature tracking for optimized prediction of cardiovascular events following myocardial infarction. JACC Cardiovasc. Imaging. 2018; 11 (10): 1433-1444. https://doi.org/10.1016/j.jcmg.2017.11.034
91.Bendary A., Tawfeek W., Mahros M., Salem M. The predictive value of global longitudinal strain on clinical outcome in patients with ST-segment elevation myocardial infarction and preserved systolic function. Echocardiography. 2018; 35 (7): 915-921. https://doi.org/10.1111/echo.13866
92.Dohi K., Sugiura E., Ito M. Utility of strainechocardio graphy in current clinical practice. J. Echocardiogr. 2016; 14 (2): 61-70. https://doi.org/10.1007/s12574-016-0282-8
93.Sengelov M., Jorgensen P.G., Jensen J.S., Bruun N.E., Olsen F.J., Fritz-Hansen T., Nochioka K., Biering-Sorensen T. Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. JACC Cardiovasc. Imaging. 2015; 8 (12): 1351-1359. https://doi.org/10.1016/j.jcmg.2015.07.013
94.Romano S., Mansour I.N., Kansal M., Gheith H., Dowdy Z., Dickens C.A., Buto-Colletti C., Chae J.M., Saleh H.H., Stamos T.D. Left ventricular global longitudinal strain predicts heart failure readmission in acute decompensated heart failure. Cardiovasc. Ultrasound. 2017; 15 (1): 6. https://doi.org/10.1186/s12947-017-0098-3
95.Huttin O., Marie P.Y., Benichou M., Bozec E., Lemoine S., Mandry D., Juilliere Y., Sadoul N., Micard E., Duarte K., Beaumont M., Rossignol P., Girerd N., Selton-Suty C. Temporal deformation pattern in acute and late phases of ST-elevation myocardial infarction: incremental value of longitudinal post-systolic strain to assess myocardial viability. Clin. Res. Cardiol. 2016; 105 (10): 815-826. https://doi.org/10.1007/s00392-016-0989-6
96.Fernandez M.C., Roubin S.R., Abu-Assi E., Fernandez S.M., Dascenzo F., Henriques J.P.S., Saucedo J., Blanco P.F., Sanchez F.C., Sole A.A.,Pousa I.M., Queija B.C., Paz R.C., Rodriguez E.L., Romo A.I., BleeMACS - CardioCHUVI/ARRITXACA - RENAMI, P4623. Impact of left ventricular ejection fraction in ischemic and bleeding risk after an acute coronary syndrome. Eur. Heart J. 2019; 40 (1): е4623. https://doi.org/10.1093/eurheartj/ehz745.1005
97.Shiino K., Yamada A., Ischenko M., Khandheria B.K., Hudaverdi M., Speranza V., Harten M., Benjamin A., Hamilton-Craig C.R., Platts D.G., Burstow D.J., Scalia G.M., Chan J. Intervendor consistency and reproducibility of left ventricular 2D global and regional strain with two different high-end ultrasound systems. Eur. Heart J. Cardiovasc. Imaging. 2017; 18 (6): 707-716. https://doi.org/10.1093/ehjci/jew120
98.Negishi T., Negishi K., Thavendiranathan P., Cho G.Y., Popescu B.A., Vinereanu D., Kurosawa K., Penicka M., Marwick T.H.; SUCCOUR Investigators. Effect of experience and training on the concordance and precision of strain measurements. JACC Cardiovasc. Imaging. 2017; 10 (5): 518-522. https://doi.org/10.1016/j.jcmg.2016.06.012
99.Krittanawong C., Zhang H., Wang Z., Aydar M., Kitai T. Artificial intelligence in precision cardiovascular medicine. J. Am. Coll. Cardiol. 2017; 69 (21): 2657-2664. https://doi.org/10.1016/j.jacc.2017.03.571
The review considers the diagnostic value of speckle tracking echocardiography for assessing the left ventricle systolic-diastolic function in ischemic heart disease, taking into account structural myocardial characteristics. Spiral structure of the myocardium and interaction of multidirectional fibers complicate the task of assessing the regional and global contractility of the left ventricle. Use of the speckle tracking echocardiography makes it possible to measure the cardiac strain in the longitudinal, circumferential, and radial directions. Speckle tracking echocardiography clinical use in case of the acute myocardial infarction and unstable angina is discussed. Speckle tracking echocardiography allows detection of the compensatory increase in longitudinal or circumferential strain in cases of left ventricle regional contractility disorders. Assessment of the left ventricular global strain, twist, and untwist provides prognostic information in patients with acute myocardial infarction and unstable angina. Despite the advantages, there are obstacles that make it difficult to use this method in clinical practice. The main ones are the quality of the ultrasound images and the absence of generally accepted normative strain values.
Keywords:
спекл-трекинг эхокардиография, продольная деформация, циркулярная деформация, радиальная деформация, левый желудочек, ишемическая болезнь сердца, speckle tracking echocardiography, longitudinal strain, circumferential strain, radial strain, left ventricle, coronary heart disease