Новости | Магазин | Журналы | Контакты | Правила | Доставка | |
Вход Регистрация |
Цель. Повышение эффективности радиочастотной абляции при крупных опухолях путем компьютерного моделирования и автоматизированного планирования роботизированной операции. Материал и методы. Разработан набор алгоритмов для планирования роботизированной установки электродов. Результаты. Оценка метода показала возможность достижения полной обработки опухоли и построения траектории с учетом возможных ограничений. Заключение. Набор алгоритмов может позволить автоматически планировать последовательное размещение игл прибора для радиочастотной абляции при проведении вмешательства.
Ключевые слова:
гепатоцеллюлярная карцинома, радиочастотная абляция, расчет траектории, медицинская робототехника, автоматизированное планирование, введение электрода, роботизированная операция, hepatocellular carcinoma, radiofrequency ablation, trajectory calculation, medical robotics, computer-aided planning, electrode insertion, robotic surger
Литература:
1.Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018; 68 (6): 394–424. doi: 10.3322/caac.21492. Erratum in: CA Cancer J. Clin. 2020; 70 (4): 313. PMID: 30207593
2.Forner A., Reig M., Bruix J. Hepatocellular carcinoma. Lancet. 2018; 391 (10127): 1301–1314. doi: 10.1016/S0140-6736(18)30010-2
3.Konstantinidis I.T., Raoof M., Zheleva V., Lafaro K., Lau C., Fong Y., Lee B. Multivisceral robotic liver surgery: feasible and safe. J. Robotic Surg. 2020; 14 (3): 503–507. doi: 10.1007/s11701-019-01017-x
4.Berelavichus S., Kriger A., Kaldarov A., Panteleev V., Raevskaya M. Robotic surgery in treatment of retroperitoneal tumors. Comparative single center study. J. Robotic Surg. 2021; 15 (3): 363–367. doi: 10.1007/s11701-020-01114-2
5.Cho Y.K., Kim J.K., Kim W.T., Chung J.W. Hepatic resection versus radiofrequency ablation for very early stage hepatocellular carcinoma: a Markov model analysis. Hepatology. 2010; 51 (4): 1284–1290. doi: 10.1002/hep.23466
6.Glassberg M.B., Ghosh S., Clymer J.W., Qadeer R.A., Ferko N.C., Sadeghirad B. Microwave ablation compared with radiofrequency ablation for treatment of hepatocellular carcinoma and liver metastases : a systematic review and meta-analysis. Onco Targets Ther. 2019; 12: 6407–6438. doi: 10.2147/ott.s204340
7.Bailey C.W., Sydnor M.K. Current state of tumor ablation therapies. Dig. Dis. Sci. 2019; 64 (4): 951–958. doi: 10.1007/s10620-019-05514-9
8.Baegert C., Villard C., Schreck P., Soler L. Multi-criteria trajectory planning for hepatic radiofrequency ablation. Lecture Notes Comp. Sci. 2007; 10 (Pt 2): 676–684. doi: 10.1007/978-3-540-75759-7_82
9.Seitel A., Engel M., Sommer C.M., Radeleff B.A., Essert-Villard C., Baegert C., Fangerau M., Fritzsche K.H., Yung K., Meinzer H.-P., Maier-Hein L. Computer-assisted trajectory planning for percutaneous needle insertions. Med. Phys. 2011; 38 (6 Part 1): 3246–3259. URL: https://pubmed.ncbi.nlm.nih.gov/21815399/
10.Schumann C., Bieberstein J., Trumm C., Schmidt D., Bruners P., Niethammer M. Fast automatic path proposal computation for hepatic needle placement. Med. Image 2010: Visualiz Image-Guided Procedures Model Proc. SPIE 2010; 7625: 76251J. doi: 10.1117/12.844186
11.Prokhorenko L., Klimov D., Vorotnikov A., Mishchenkov D., Poduraev Y. The concept of spatial motion restriction zones in a robot-assisted surgical system. J. Robotic Surg. 2022; 16 (2): 445–452. doi: 10.1007/s11701-021-01261-0
12.Wang K.F., Pan W., Wang K.F., Wang G.F., Madhava P., Pan H.M., Kong D-X., Liu X.G. Geometric optimization of a mathematical model of radiofrequency ablation in hepatic carcinoma. Asian Pacific J. Cancer Prev. 2013; 14 (10): 6151–6158. doi: 10.7314/apjcp.2013.14.10.6151
13.Liu S., Xia Z., Liu J., Xu J., Ren H., Lu T., Yang X. Automatic multiple-needle surgical planning of robotic-assisted microwave coagulation in large liver tumor therapy. PLoS One. 2016; 11 (3): e0149482. doi: 10.1371/journal.pone.0149482
14.Ren H., Campos-Nanez E., Yaniv Z., Banovac F., Abeledo H., Hata N., Cleary K. Treatment planning and image guidance for radiofrequency ablation of large tumors. IEEE J. Biomed. Health Inform. 2014; 18 (3): 920–928. doi: 10.1109/jbhi.2013.2287202
15.Chen R., Jiang T., Lu F., Wang K., Kong D. Semiautomatic radiofrequency ablation planning based on constrained clustering process for hepatic tumors. IEEE Trans. Biomed. Eng. 2017; 65 (3): 645–657. doi: 10.1109/tbme.2017.2712161
16.Liu P., Qin J., Duan B., Wang Q., Tan X., Zhao B., Libao Jonnathan P., Chui C.-K., Heng P.-A. Overlapping radiofrequency ablation planning and robot-assisted needle insertion for large liver tumors. Int. J. Med. Robot. Comput. Assist. Surg. 2019; 15 (1): e1952. doi: 10.1002/rcs.1952
17.Liang L., Cool D., Kakani N., Wang G., Ding H., Fenster A. Automatic radiofrequency ablation planning for liver tumors with multiple constraints based on set covering. IEEE Trans. Med. Imaging. 2019; 39 (5): 1459–1471. doi: 10.1109/tmi.2019.2950947
18.Liang L., Cool D., Kakani N., Wang G., Ding H., Fenster A. Development of a multi-objective optimized planning method for microwave liver tumor ablation. Lecture Notes Comp. Sci. 2019; 11768: 110–118. doi: 10.1007/978-3-030-32254-0_13
19.Vorotnikov A., Buinov M.A., Bushuev S.V., Poduraev Y.V., Chunihin A.A. Standard deviation from the average cutting velocity as a criterion for comparing robot trajectories and manual movements of a doctor for performing surgical operations in maxillofacial surgery. Int. J. Mech. Eng. Robot. Res. 2018; 7 (3): 319–323. doi: 10.18178/ijmerr.7.3.319-323
20.Lloyd S. Least squares quantization in PCM. IEEE Transactions on Information Theory. 1982; 28 (2): 129–137. doi: 10.1109/TIT.1982.1056489.
21.Villard C., Soler L., Gangi A. Radiofrequency ablation of hepatic tumors: simulation, planning, and contribution of virtual reality and haptics. Computer Methods in Biomech. Biomed. Engin. 2005; 8 (4): 215–227. doi: 10.1080/10255840500289988
22.Nelder J.A., Mead R. A simplex method for function minimization. Computer J. 1965; 7 (4): 308–313. doi: 10.1093/comjnl/7.4.308
23.https://www.slicer.org/ https://www.slicer.org/ 3D Slicer image computing platform. Обновлено 19. 02. 2024.
24.https://www.blender.org/download/ Обновлено 22.05.2018
25.3D-IRCADb (3D Image Reconstruction for Comparison of Algorithms Database) https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/ Обновлено 2021.
Aim. To improve the efficiency of radiofrequency ablation for large tumors by computer-aided modeling and planning of robotic surgery. Materials and methods. A set of algorithms for planning robotic electrode insertion was developed. Results. The evaluation of the technique proved its potential for achieving complete tumor processing and trajectory building with all feasible constraints. Conclusion. The set of algorithms provides computer-aid planning for sequential placement of radiofrequency ablation needles during intervention.
Keywords:
гепатоцеллюлярная карцинома, радиочастотная абляция, расчет траектории, медицинская робототехника, автоматизированное планирование, введение электрода, роботизированная операция, hepatocellular carcinoma, radiofrequency ablation, trajectory calculation, medical robotics, computer-aided planning, electrode insertion, robotic surger