Выход
Вход/Login
 
E-mail
Пароль/Password
Забыли пароль?
Введите E-mail и жмите тут. Пароль будет выслан на указанный адрес
Войти (LogIn)

 

Если вы первый раз здесь, то зарегистрируйтесь

Регистрация/Sign Up
Полное имя (Ф И О)/Full name
E-mail
Повторите E-mail
Телефон/Phone
Зарегистрироваться,
на ваш E-mail будет выслан временный пароль

Нажимая кнопку Зарегистрироваться, вы соглашаетесь с Правилами сайта и Политикой Конфиденциальности http://vidar.ru/rules.asp

 

Медицинская литература. Новинки


 

 

 

 

 

 
вce журналы << Поиск по всем журналам: э << очистить поиск << Медицинская визуализация << 2009 год << №2 <<
стр.73
отметить
статью

Перспективы магнитно-резонансной спектроскопии как метода диагностики в невропатологии

Н.А. Семенова*, Т.А. Ахадов**, С.Л. Ситников***, С.Д. Варфоломеев****
Вы можете загрузить полный текст статьи в формате pdf
Семенова Наталия Александровна – доктор биол. наук, ведущий научный сотрудник отдела динамики химических и биологических процессов Института химической физики им. Н.Н. Семенова РАН, Ахадов Толиб Абдуллаевич – доктор мед. наук, профессор, руководитель отдела лучевых методов диагностики НИИ неотложной детской хирургии и травматологии, Ситников Сергей Леонидович – студент физического факультета МГУ им. М. В. Ломоносова, Варфоломеев Сергей Дмитриевич – член-корр. РАН, директор Института биохимической физики им. Н.М. Эммануэля РАН.
Адрес для корреспонденции: Семенова Наталия Александровна: дбн, ведущий научный сотрудник отдела динамики химических и биологических процессов Института химической физики им. Н.Н. Семенова РАН. Москва 117321 ул. Осторовитянова

В обзоре обсуждаются возможности метода спектроскопии ядерного магнитного резонанса в диагностике и прогнозе заболеваний центральной нервной системы. Предлагается использование сигнала N-ацетиласпартата (NAA) в качестве маркера функционально полноценных нейронов. Приводятся данные о связи уровня NAA в структурах мозга с нарушениями биологических функций, сведения о метаболизме NAA и его роли в клетках нервной ткани.

Ключевые слова:
магнитно-резонансная спектроскопия, мозг, Nацетиласпартат, нейродегенерация.

Литература:
1. Лундин А.Г, Федин Э.И. ЯМРспектроскопия. М: Наука.
1986; 223.
2. Семенова Н.А. Метод ЯМРспектроскопии в прижизненных исследованиях обменных процессов. Особенности энергетического метаболизма головного мозга
по данным ЯМР in vivo. Успехи современной биологии
РАН. 2005; 125: 419430.
3. Сергеев Н.М. Спектроскопия ЯМР.  М.: МГУ, 1981 279
с.
4. Ernst R.R., Bodenhausen G., Wokaun A. Principles of
Nuclear Magnetic Resonance in One and Two
Dimensions. Oxford: University Press, 1987; 610 p.
5. Gunther H. NMR Spectroscopy. Chichester: Wiley, 1995;
602 p
6. Rink P.A. Introduction into Magnetic Resonance in
Medicine. Stuttgart  New York: Theme Medical
Publishers Inc., 1990; 228 p.
7. Diehl P., Fluck E., Gunther H. et al. NMR. Basic principles
and progress 28. In vivo Magnetic resonance spectroscopy III: In vivo Magnetic resonance spectroscopy III:
potential and limitations. Berlin  Heidelberg  New York:
SpringerVerlag, 1992; 190 p.
8. Семенова Н.А., Топчян А.В., Мирзоян Р.С. с соавт. Индивидуальные особенности энергетического метаболизма мозга крыс при локальной ишемии по данным
спектроскопии ядерного магнитного резонанса in vivo.
Бюлл. Эксперимент. Биол. 1999; 128(10): 383386.
9. Crockard H.A., Gadian D.G., Frackowiak R.S.J. et al.
Acute cerebral ischemia: concurrent changes in cerebral
blood flow,energy metabolism, pH, and lactate measured
with hydrogen clearance, and 31P and 1H nuclear magnetic resonance spectroscopy. II. Changes duding
ischemia. J. Cerebr. Blood Flow Metab. 1987; 7: 394402.
10. Tallan H. H., Moore S., Stein W.H. NAcetylLAspartic
acid in brain. J. Biol. Chem. 1956; 219: 257.
11. Miyake M., Kakimoto Y., Sorimachi M. A gas chromatographic method for the determination of NacetylL
aspartic acid, Nacetylalphaaspartylglutamic acid and
betacitrylLglutamic acid and their distributions in the
brain and other organs of various species of animals. J.
Neurochem. 1981; 36: 804810.
12. Pan J.W., Takahashi K. Interdependence of Nactyl aspartate and highenergy phosphates in heathy human brain.
Ann. Neurol. 2005; 57: 9297.
13. Goldstein F.B. Biosynthesis of NLacetyl aspartic acid by
subcellular preparations of rat brain. J. Biochem. Biophys.
Acta. 1959; 33: 583584.
14. Madhavarao C.N., Chinopoulos C., Chandrasekaran K. et
al. Characterization of the Nacetylaspartate biosynthetic
enzyme from rat brain. J. Neurochem. 2003; 86: 824835.
15. Margolis R.U., Barkulis S.S., Geiger A. A comparison
between the incorporation of 14C from glucose into N-acetyl-L-aspartic acid and aspartic acid in the brain perfusion. J. Neurochem, 1960; 5: 379382.
16. Truckenmiller M.E., Namboodiri M.A.A., Browstein M.J. et
al. NAcetylation of Laspartate in the nervous system: differential distribution of a specific enzyme. J. Neurochem.
1985; 45: 16581662.
17. Robinson M.B., Blakely R.D., Couto R. et al. Hydrolysis of
the brain dipeptide NacetylLaspartylLglutamate:
identification and characterization of a novel N-acetylated-alpha-linked acidic dipeptidase activity from rat brain.
J. Biol. Chem. 1987; 262: 1449814502.
18. Slusher B.S., Robinson M.B., Tsai G. et al. Rat brain N-acetylated alphalinked acidic dipeptidase activity. J. Biol.
Chem. 1990; 265: 2129721301.
19. D'Adamo A.F., Peisach J., Manner G. et al. Nacetylaspartate amidohydrolase: purification and properties. J.
Neurochem. 1977; 28: 739  744.
20. Goldstein F.B. Amidohydrolases of brain; enzymatic
hydrolysis of NacetylLaspartate and other Nacyl-Lamino acids. J. Neurochem. 1976; 26: 4549.
21. Baslow M.H. Evidence supporting a role for Nacetyl-Laspartate as a molecular water pump in myelinated neurons in the central nervous system. An analytical review.
Neurochem. Int. 2002; 28: 941953.
22. Baslow M.H. Brain Nacetylaspartate as a molecular water
pump and its role in the etiology of Canavan disease; a
mechanistic explanation. J. Mol. Neurosci.. 2003; 21:
185190.
23. D'Adamo A.F. Jr., Yatsu F.M. Acetate metabolism in the
nervous system. NAcetylLaspartic acid and the biosynthesis of brain lipids. J. Neurochem. 1966; 13: 961965.
24. D'Adamo A.F. Jr, Gidez L.I., Yatsu F.M. Acetyl transport
mechanisms. Involvement of Nacetyl aspartic acid in de
novo fatty acid biosynthesis in the developing rat brain.
Exp. Brain Res. 1968; 5: 267273.
25. Moffet J.R., Tieman S.B., Weinberger D.R. et. al. Function
of Nactil aspartil glutamate un brain: A unique neuronal
molecule in the central nervous system. Springer Sciens +
Business Media. N.Y. 2006; 95112.
26. Bates T.E, Williams S.R., Gadian D.G. et al. 1H NMR study
of cerebral development in the rat. NMR Biomed. 1989; 2:
225229.
27. Koller K.J, Coyle J.T. Ontogenis of Nacetylaspartate and
Nacetylaspartylglutamate in rat brain. Brain Res. 1984;
317: 137140.
28. Tallan H. H. Studies on the distribution of NacetylLaspartic acid in brain. J. Biol. Chem. 1957; 224: 4145.
29. Takashima S., Chan F., Becker L. E. et al. Morphology of
the developing visual cortex of the human infant: a quantitative and qualitative Golgi study. J. Neuropathol. Exp.
Neurol. 1980; 39: 487501.
30. Choi J.Y., Gruetter R. Dynamic or inert metabolism?
Turnover of Nacetyl aspartate and glutathione from D[113C] glucose in the rat brain in vivo. J. Neurochem. 2004;
91: 778785.
31. Koller K.J., Zaczek R., Coyle J.T. NAcetylaspartyl glutamate: regional levels in rat brain and the effects of brain
lesions as determined by a new HPLC method. J.
Neurochem. 1984; 43: 11361142.
32. Nadler J. V., Cooper J. R. NacetylLaspartic acid content
of human neural tumors and bovine peripheral nervous tissue. J. Neurochem. 1972; 19: 313319.
33. Baslow M. H., Yamada S. Identification of Nacetylaspartate in the lens of the vertebrate eye: a new model for the
investigation of the function of Nacetylated amino acids
in vertebrates. Exp. Eye Res. 1997; 64: 283286.34. Mcelwain H., Bachelard H.S. Biochemistry of the central
nervous system. 5th ed., London: ChurchillLivingstone,
1985. 630 p.
35. Taylor D.L., Davies S.E. C., Obrenovitch T.P. et al.
Extracellular Nacetylaspartate in the rat brain: in vivo
determination of basal levels and changes evoked by high
K+. J. Neurochem. 1994; 62: 23492355.
36. Sager T.N., FinkJensen A., Hansen A.J. Transient elevation of interstitial Nacetylaspartate in reversible global
brain ischemia. J. Neurochem. 1997; 68: 675682.
37. Gill S.S., Small R.K., Thomas D.G.T. et al. Brain. metabolites as 1H NMR markers of neuronal and glial. disorders.
NMR Biomed. 1989; 2: 196203.
38. Moffett J. R., Namboodiri M. A., Neale J. H. Enhanced
carbodiimide fixation for immunohistochemistry: application to the comparative distributions of Nacetylaspartyl-glutamate and Nacetylaspartate immunoreactivities in rat
brain. J. Histochem. Cytochem. 1993; 41: 559570.
39. Simmons M. L., Frodonza C. G. and Coyle J. T.
Immunocytochemical localization of Nacetylaspartate
with monoclonal antibodies. Neuroscience. 1991; 45: 3745.
40. Sager T. N., Laursen H., FinkJensen A., et al. N-Acetylaspartate distribution in rat brain striatum during
acute brain ischemia. J. Cereb. Blood Flow Metab. 1999;
19: 164172.
41. Sager T. N., Topp S., Torup L., et al. Evaluation of CA1
damage using singlevoxel 1HMRS and unbiased stereology: Can noninvasive measures of Nacetylaspartate
following global ischemia be used as a reliable measure of
neuronal damage. Brain Res. 2001; 892: 166175.
42. Konaka K., Ueda H., Li J. Y., et al. NAcetylaspartate to
total creatine ratio in the hippocampal CA1 sector after
transient cerebral ischemia in gerbils: influence of neuronal elements, reactive gliosis, and tissue atrophy. J.
Cereb. Blood Flow Metab. 2003; 23: 700708.
43. Federico F., Simone I. L., Lucivero V., et al. Pronostic value
of proton magnetic resonance spectroscopy in ischemic
stroke. Arch. Neurol. 1998; 55: 489494.
44. Ford C.C., Griffey R.H., Matwiyoff N. A., et al. Multivoxel.
1HMRS of stroke. Neurology. 1992; 42: 14081412.
45. Graham G. D., Kalvach P., Blamire A. M. et al. Clinical correlates of proton magnetic resonance spectroscopy findings after acute cerebral infarction. Stroke. 1995; 26: 225-229.
46. Lemesle M., Walker P., Guy F. Multivariate analysis predicts clinical outcome 30 days after middle cerebral artery
infarction. Acta Neurol. Scand. 2000; 102: 117.
47. Pereira A. C., Saunders D. E., Doyle V. L., et al.
Measurement of initial Nacetylaspartate concentration
by magnetic resonance spectroscopy and initial infarct
volume by MRI predicts outcome in patients with middle
cerebral artery territory infarction. Stroke. 1999; 30: 15771582.
48. Demougeot C., Marie C., Giroud M., et al. N
Acetylaspartate: a literature review of animal research on
brain ischaemia. J Neurochem. 2004; 90: 776784.
49. Guimaraes A.R.; Schwartz P.; Prakash M.R.; et al.
Quantitative in vivo 1H nuclear magnetic resonance spectroscopic imaging of neuronal loss in rat brain.
Neuroscience. 1995; 69: 10951101.
50. Davie C.A , Barker G.J , Webb S. et al. Persistant functional deficit in multiplr sclerosis ans autosomatic dominant
cerebellar ataxia is associates with axon loss. Brain. 1995;
118: 15831592.
51. De Stephano N., Matthews P. M.,Arnold D. L. Reversible
decrease in Nacetylaspartate after acute brain injury.
Magn. Reson. Med. 1995; 34: 721727.
52. Kalra S., Cashman N. R., Genge A. et al. Recovery of N-acetylaspartate in corticomotor neurons of patients with
ALS after riluzole therapy. (1998). Neuroreport. 1998; 9:
17571761.
53. Pavlakis S. G., Lu D., Frank Y. et al. Brain lactate and N-acetylaspartate in pedriatic AIDS encephalopathy. Am. J.
Neuroradiol. 1998; 19: 383385.
54. Von Kienlin M., Kunnecke B., Metzger F. et al. Altered
metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span.
Neurobiol. dis. 2005; 18: 3239.
55. Jessen F., Block W., Traber F. Proton. MR spectroscopy
detects a relative decrease of Nacetyl aspartate in the
medial temporal lobe of patients with AD. Neurology.
2000; 55: 684688.
56. Kantarci K., Jack C.R., Xu Y.C. Regional metabolic pat
terns in mild cognitive impairment and Alzheimer's disease, a 1H MRS study. Neurology. 2000; 55: 210217.
57. Schuff N., Capizzano A.A., Du A.T. Selective reduction of
Nacetylaspartate in medial temporal and parietal lobes in
AD. Neurology. 2002; 58: 928935.
58. Kantarci K. 1H magnetic resonance spectroscopy in
dementia. Br J Radiol.. 2007; 80: 146152.
59. Ding B., Chen K.M., Ling H.W. et al. Diffusion tensor imaging correlates with proton magnetic resonance spectroscopy in posterior cingulate region of patients with
Alzheimer's disease. DementGeriatrCognDisord.2008;
25:. 218225.
60. Frederick B.D., Lyoo I.K, Satlin A. et al. In vivo proton magnetic resonance spectroscopy of the temporal lobe in
Alzheimer's disease. Prog. Neuropsychopharmacol. Boil.
Psychiatry. 2004; 28: 13131322.
61. Braak H., Braak E. Neuropathological staging of
Alzheimer's disease. Acta Neuropathol. (Berl). 1991; 82:
239259.
62. Bobinski M., deLeon M.J., Convit A. MRI of entorhinal cortex in Alzheimer's Disease. The Lancet. 1999; 353: 3840.
63. Convit A., de Leon M.J., Golomb J. et al. Hippocampal
atrophy in early Alzheimer's disease: anatomic specificity
and validation. Psychiatr. Q. 1993; 64: 371387.
64. Frisoni G.B., Bianchetti A., Geroldi C. et al. Measures of
medial temporal lobe atrophy in Alzheimer's disease. J.
Neurol. Neurosurg. Psychiatry. 1994; 57: 14381439.
65. Golebiowski M., Barcikowska M., Pfeffer A. Magnetic resonance imagingbased hippocampal volumetry in patients
with dementia of the Alzheimer type. Dement. Geriatr.
Cogn. Disord. 1999; 10: 284288.
66. Jack C.R., Petersen R.C., Xu Y. Medial temporal atrophy
on MRI in normal aging and very mild Alzheimer's disease.
Neurology. 1997; 49: 786794.
67. Jack C.R. Jr., Petersen R.C., O'Brien P.C. et al. MR based
hippocampal volumetry in the diagnosis of Alzheimer's
disease. Neurology. 1992; 42: 183  188.
68. Kesslak J.P., Nalcioglu O., Cotman C.W. Quantification of
magnetic resonance scans for hippocampal and parahip-pocampal atrophy in Alzheimer's disease. Neurology.
1991; 41: 5154.
69. Lehericy S., Baulac M., Chiras J. Amygdalohippocampal
MR volume measurements in the early stages of
Alzheimer's disease. Am. J. Neuroradiol. 1994; 15: 927937.
70. Adalsteinsson E., Sullivan E.V., Kleinhans N. et al.
Longitudinal decline of the neuronal marker Nacetyl
aspartate in Alzheimer's disease. Lancet. 2000; 355:
16961697.
71. Dixon R.M., Bradley K.M., Budge M.M. et al. Longitudinal
quantitative proton magnetic resonance spectroscopy of
the hippocampus in Alzheimer's disease. Brain. 2002;
125: 23322341.
72. Jones R.S., Waldman A.D. 1HMRS evaluation of metabolism in Alzheimer's disease and vascular dementia.
Neurol. Res. 2004; 26: 488495.
73. Ernst T., Chang L., Melchor R. et al. Frontotemporal
dementia and early Alzheimer disease: differentiation with
frontal lobe H1 MR spectroscopy. Radiology. 1997; 203:
829836.
74. Huang W., Alexander G.E., Chang L. Brain metabolite concentration and dementia severity in Alzheimer's disease. A
1H MRS study. Neurology. 2001; 57: 626632.
75. Miller B.L., Moats R.A., Shonk T., et al. Alzheimer disease:
depiction of increased cerebral myoinositol with proton
MR spectroscopy. Radiology. 1993; 187: 433437.
76. Miller D.H., Grossman R.I., Reingold S.C. et al. The role of
magnetic resonance techniques in understanding and
managing multiple sclerosis. Brain. 1998; 121: 324.
77. Brand A., RichterLandsberg C., Leibfritz D. Multinuclear
NMR studies on the energy metabolism of glial and neu
ronal cells. Dev. Neurosci. 1993; 15: 289298.
78. De Stefano N, Filippi M. MR spectroscopy in multiple sclerosis. J Neuroimaging. 2007; l: 31S35S.
79. De Stefano N., Filippi M., Miller D. et al. Guidelines for
using proton MR spectroscopy in multicenter clinical MS
studies. Neurology. 2007; 69: 19421952.
80. Blamire A.M., Cader S., Lee M. et al. Axonal damage in the
spinal cord of multiple sclerosis patients detected by magnetic resonance spectroscopy. Magn Reson Med. 2000;
58: 880885.
81. Tellez N, Alonso J, Rio J, et al. The basal ganglia: a substrate for fatigue in multiple sclerosis. // Neuroradiology.
2008. V. 50. P. 1723.
82. Van Au Duong M, Audoin B, Le Fur Y, et al. Relationships
between gray matter metabolic abnormalities and white
matter inflammation in patients at the very early stage of
MS : a MRSI study. // J Neurol. 2007. V. 254. P. 91423.
83. Gadea M., MartinezBisbal M.C., MartiBonmati L., et al.
Spectroscopic axonal damage of the right locus coeruleus
relates to selective attention impairment in early stage
relapsingremitting multiple sclerosis. // Brain. 2004. V.
127. P. 89  98.
84. Staffen W., Zauner H., Mair A., et al. Magnetic resonance
spectroscopy of memory and frontal brain region in early
multiple sclerosis. // J. Neuropsychiatry Clin. Neurosci.
2005. V. 17. P. 357  363.
85. Davie C.A., Barker G.J., Thompson A.J., et al. 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple
sclerosis. // J. Neurol. Neurosurg. Psychiatry. 1997. V. 63.
P. 736  42.
86. Kapeller P., Ropele S., Enzinger C., et al. Discrimination of
white matter lesions and multiple sclerosis plaques by
short echo quantitative 1Hmagnetic resonance spectroscopy. // J. Neurol. 2005. V. 252. P. 1229 1234.
87. Brenner R.E., Munro P.M., Williams S.C. et al. // Magn.
Reson. Med. 1993. V. 29. P. 737745.
88. Sijens P.E., Irwan R., Potze J.H. et al. Analysis of the
human brain in primary progressive multiple sclerosis with
mapping of the spatial distributions using 1H MR spectroscopy and diffusion tensor imaging. Eur Radiol. 2005
Aug; 15(8): 168693. Epub 2005 Apr 22.
89. Lucetti C., Del Dotto P., Gambaccini G. et al. Proton magnetic resonance spectroscopy (1HMRS) of motor cortex
and basal ganglia in de novo Parkinson's disease patients.
Neurol. Sci. 2001; 22: 6970.
90. Lucetti C., Del Dotto P., Gambaccini G. et al. Influences of
dopaminergic treatment on motor cortex in Parkinson disease: a MRI/MRS study. Mov Disord. 2007; 22: 2170
2175.
91. Choe B.Y., Park J.W., Lee K.S. et al. Neuronal laterality in
Parkinson's disease with unilateral symptom by in vivo 1H
magnetic resonance spectroscopy. Invest. Radiol. 1998;
33:. 450455.
92. Hu M.T., TaylorRobinson S.D., Chaudhuri K.R. et al.
Evidence for cortical dysfunction in clinically non-demented patients with Parkinson's disease: a proton MR spectroscopy study. J. Neurol. Neurosurg. Psychiatry. 1999;
67: 2026.
93. Гусев Е.И., Скворцова В.И. Ишемия головного мозга.
М.: Медицина, 2001. 327 c.
94. Stengel A., NeumannHaefelin T., Singer O.C. et al.
Multiple spinecho spectroscopic imaging for rapid quantitative assessment of Nacetylaspartate and lactate in
acute stroke. Magn Reson Med. 2004; 52(2): 22838.
95. Higuchi T., Graham S.H., Fernandez E.J. et al. Effects of
severe global ischemia on Nacetylaspartate and other
metabolites in the rat brain. Magn. reson. med. 1997; 37:
851857.
96. Помыткин И.А., Сторожева З.И. Семенова Н.А. с соавт.
Нейропротективный эффект янтарнокислого холина
по тестам когнитивной функции и 1Н ЯМР in vivo в модели хронической ишемии головного мозга. Изв. АН.
Сер. Биол. 2007; 1: 4562.
97. Dreher W., Kuhn B., Gyngell M. L. et al. Temporal and
regional changes during focal ischemia in rat brain studied
by proton spectroscopic imaging and quantitative diffusion NMR imaging. Magn. Reson. Med. 1998; 39: 878888.
98. Higuchi T., Fernandez E. J., Maudsley A. A. et al. Mapping
of lactate and NacetylLaspartate predicts infarction
during acute focal ischemia: in vivo1H magnetic resonance spectroscopy in rats. Neurosurgery. 1996; 38: 121129.
99. Nonaka M., Yoshimine T., Kumura E. et al. Decrease in N-acetylaspartate without commensurate accumulation of
acetate in focal cerebral ischemia in rat. Neurol. Res.
1999; 21: 771774.
100. Van der Toorn A., Verheul H. B., van der Sprenkel J. W. et
al. Changes in metabolites and tissue water status after
focal ischemia in cat brain assessed with localized protonMR spectroscopy. Magn. Reson. Med. 1994; 32: 685691.
101. Peres M., Bourgeois D., Roussel S. Twodimensional 1H
spectroscopic imaging for evaluating the local metabolic
response to focal ischemia in the conscious rat. NMR
Biomed.1992; 5: 11-19
102. Malisza K. L., Kozlowski P., Ning G. et al. Metabolite
changes in neonatal rat brain during and after cerebral
hypoxiaischemia: a magnetic resonance spectroscopic
imaging study. NMR Biomed. 1999; 12: 3138.
103. Bruchn H., Frahm J.,Gyngell M.L. et al. Localized proton
NMR spectroscopy in different regions of the human brain
in vivo. Relaxation times and concentrations of cerebral
metabolites. Magn. Reson. Med.1989; 9: 126130.
104. Saunders D. E. MR spectroscopy in stroke. Br. Med. Bull.
2000; 56: 334345.
105. Demougeot C., Walker P., Beley A. et al. Spectroscopic
data following stroke reveal tissue abnormality beyond the
region of T2weighted hyperintensity. J. Neurol. Sci. 2002;
199: 7378.
106. Danielsen E.R., Ross B. Magnetic resonance spectroscopy diagnosis of neurological diseases. Marcel
Dekker. N.Y. 1999.
107. Brooks W.M., Friedman S.D., Gasparovic C. Magnetic resonance spectroscopy in traumatic brain injury. J. Head
Trauma Rehabil. 2001; 16: 149164.

Perspectives of Magnetic Resonance Spectroscopy as the Method of Diagnostics in Neuropathology

N.А. Semenova, T.A. Akhadov, S.L. Sitnikov, S.D. Varfolomeev

In the review possibilities of a method of spectroscopy of a nuclear magnetic resonance in diagnostics and the prognosis of diseases of the central nervous system are discussed. Use of N-acetylaspartate (NAA) signal as a marker of functionally valid neurons is offered. The data about correlation of NAA level in structures of a brain with biological disfunctions, data on metabolism NAA and its role in neuronal cells is cited.

Keywords:
magnetic resonance spectroscopy, brain, N-acetylaspartate, neyrodegeneration.

Новости   Магазин   Журналы   Контакты   Правила   Доставка   О компании  
ООО Издательский дом ВИДАР-М, 2025