Новости | Магазин | Журналы | Контакты | Правила | Доставка | |
Вход Регистрация |
Цель исследования: анализ современного состояния лучевой диагностики эпилепсии с использованием позитронной эмиссионной томографии (ПЭТ) в сопоставлении с другими методами визуализации. В обзоре приводятся данные о роли различных медиаторных систем в патогенезе эпилепсии. Кроме того, детально рассмотрены возможности ПЭТ с 18F-фтордезоксиглюкозой и со специфическими радиофармпрепаратами для изучения различных нейротрансмиттерных систем в диагностике и оценке эффективности лечения височной и экстратемпоральной форм заболевания, резистентных к фармакологическому лечению.
Ключевые слова:
позитронная эмиссионная томография, эпилепсия, магнитно-резонансная томография, радиофармпрепарат, медиаторные системы.
Литература:
1. Shorvon S. Epilepsy. Oxford University Press. New York,
2009.
2. Newton C.R., Garcia H.H. Epilepsy in poor regions of the
world. Review. Lancet. 2012; 380 (9848): 1193–1201.
3. Мильчакова Л.Е. Эпилепсия в отдельных субъектах
Российской Федерации: эпидемиология, клиника, социальные аспекты, возможности оптимизации фармакотерапии: Дис. ... дра мед. наук. М., 2008.
Mil’chakova L.E. Epilepsy in some regions of the Russian
Federation: epidemiology, clinical, social aspects, opportunities to optimize pharmacotherapy: Dis. ... d-ra med.
nauk. М., 2008.
4. Дыскин Д.Е. Патогенетическая диагностика эпилепсии: Дис. ... дра мед. наук. СПб., 2003.
Dyskin D.E. Pathogenic diagnosis of epilepsy: Dis. ... d-ra
med. nauk. SPb., 2003.
5. Клиническая эпилептология (с элементами нейрофизиологии); Под ред. Л.З. Зенкова. М.: ООО “Медицинское информационное агентство”, 2002.
Clinical Epileptology (with elements of Neurophysiology);
Ed. L.Z. Zenkov. M.: OOO “Meditsinskoe informatsionnoe
agentstvo”, 2002.
6. Одинак М.М., Дыскин Д.Е. Эпилепсия: этиопатогенез,
клиника, дифференциальная диагностика, медикаментозное лечение. СПб.: Политехника, 1997.
Odinak M.M., Dyskin D.E. Epilepsy: etiopathogenesis,
clinical features, differential diagnosis, medication. SPb.:
Polytechnika, 1997.
7. Kuzniecky R.J., Jackson G.D. Magnetic Resonance in
epilepsy. New York: Raven Press, 1995.
8. Lu D., Margouleff C., Rubin E. Temporal lobe epilepsy:
correlation of proton magnetic resonance spectroscopy
and 18Ffluorodeoxyglucose positron emission tomography. Magn. Reson. Med. 1997; 37 (1): 18–23.
9. Theodore W.H., Sato S., Kufta C.V. et al. FDG-positron
emission tomography and invasive EEG: seizure focus
detection and surgical outcome. Epilepsia. 1997; 38 (1):
81–86.
10. Theodore W.H., Gaillard W.D. Neuroimaging and the progression of epilepsy. Review. Prog. Brain. Res. 2002; 135:
305–313.
11. Theodore W.H. When is positron emission tomography
really necessary in epilepsy diagnosis? Review. Curr. Opin.
Neurol. 2002; 15 (2): 191–195.
12. AbouKhalil B.W., Siegel G.J., J.C. Sackellares et al.
Positron emissoin tomography studies of cerebral glucose
metabolism in chronic partial epilepsy. Ann. Neurol. 1987;
22: 480–486.
13. Semah F., Baulac M., Hasboun D. et al. Is interictal temporal hypometabolism related to mesial temporal sclerosis? A positron emission tomography / magnetic resonance imaging confrontation. Epilepsia. 1995; 36:
447–456.
14. Stefan H., Pawlik G., Bocher-Schwartz H.G. et al. Functional and morphological abnormalities in temporal lobe
epilepsy: a comparison of interictal and ictal EEG, CT,
MRI, SPECT and PET. J. Neurol. 1987; 234: 377–384.
15. Berkovic S.F., Andermann F., Oliver A. et al. Hippocampal
sclerosis in temporal lobe epilepsy demonstrated by MR
imaging. Ann. Neurol. 1991; 29: 175–182.
16. Cheon J.E., Chang K.H., Kim H.D. et al. MR of hippocampal sclerosis: Comparison of qualitative and quantitative
assessments. Ann. J. Newroradiol. 1998; 19: 465–468.
17. Connelly A., Jackson G.D., Duncan J.S. et al. Magnetic
resonance spectroscopy in the temporal lobe epilepsy.
Neurology. 1994; 44: 1411–1417.
18. Cook M.J., Fish D.R., Shorvon S.D. et al. Hippocampal
volumetric and morphometric studies in frontal and temporal lobe epilepsy. Brain. 1992; 115: 1001–1015.
19. Connelly A., Paesschen W.V., Porter D.A. et al. Proton
magnetic resonance spectroscopy in MRInegative temporal lobe epilepsy. Neurology. 1998; 51: 61–66.
20. Chan S., Chin S.S., Nordli D.R. et al. Prospective magnetic resonance imaging identification of focal cortical dysplasia, including the nonballoon cell subtype. Ann.
Neurol. 1998; 44 (5): 749–757.
21. Jack C.R. Epilepsy: surgery and imaging. Radiology.
1993; 189: 635–646.
22. Kim Y.K. 18FDG PET in localization of frontal lobe epilepsy: comparison of visual and SPM analysis. J. Nucl. Med.
2002; 43: 1167–1174.
23. Shovron S. MRI of Cortical Dysgenesis. Epilepsia. 1997;
38 (10): 13–18.
24. Vallabhajosula S. Molecular Imaging. Radiopharmaceuticals for PET and SPECT. New York: Springer. 2009.
25. Workman R.B., Coleman R.E. PET/CT: Essentials for
Clinical Practice. New York: Springer, 2006.
26. Engel J.Jr., Henry T.R., Risinger M.W. et al. Presurgical
evaluation for partial epilepsy: relative contributions of
chronic depthelectrode recordings versus FDGPET and
scalpsphenoidalictal EEG. Neurology. 1990; 40:
1670–1677.
27. Gaillard W.D., Bhatia S., Bookheimer S.Y. et al. FDG-PET
and volumetric MRI in the evaluation of patients with partial epilepsy. Neurology. 1995; 45: 123–126.
28. Hajek M., Antonini A., Leenders K.L. et al. Mesiobasal versus lateral temporal lobe epilepsy: metabolic differences
in the temporal lobe shown by interictal18FFDG positron
emission tomography. Neurology. 1993; 43: 79–86.
29. Henry T.R., Frey K.A., Sackellares J.C. et al. In vivo cerebral metabolism and central benzodiazepinereceptor
binding in temporal lobe epilepsy. Neurology. 1993; 43:
1998–2006.
30. Huijin H., Tianzhen S., Xingrong C. Comparison of MRI,
MRS, PET and EEG in the diagnosis of temporal lobe
epilepsy. Chin. Med. J. 2001; 114 (9): 70–79.
31. Leiderman D.B., Albert P., Balish M. et al. The dynamics of
metabolic change following seizures as measured by
positron emission tomography with fludeoxyglucose F18.
Arch. Neurol. 1994; 51: 932–936.
32. Henry T.R., Mazziotta J.C., Engel J.Jr. Interictal metabolic
anatomy of mesial temporal lobe epilepsy. Arch. Neurol.
1993; 50: 582–589.
33. Theodore W.H., Newmark M.E., Sato S. et al. 18F-fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann. Neurol. 1983; 14:
429–437.
34. Тютин Л.А., Станжевский А.А. Современные возможности лучевой диагностики эпилепсии височной доли
(обзор литературы). Вестн. рентгенол. 2002; 4: 54–62.
Tyutin L.A., Stanzhevskiy A.A. The modern possibilities of
temporal lobe epilepsy imaging (review). Vestn.
Rentgenol. 2002; 4: 54–62.
35. Blum D.E., Ehsan T., Dungan D. et al. Bilateral temporal
hypometabolism in epilepsy. Epilepsia. 1998; 39 (6):
651–659.
36. Chugani H.T., Rintahaka P.J., Shewmon D.A. Ictal patterns
of cerebral glucose utilization in children with epilepsy.
Epilepsia. 1994; 35: 813–822.
37. Cornford E.M., Gee M.N., Swartz B.E. et al. Dynamic (18F)
fluorodeoxyglucose positron emission tomography and
hypometabolic zones in seizures: reduced capillary influx.
Ann. Neurol. 1998; 43: 801–805.
38. Theodore W.H., Dorwart R., Holmes M. et al. Neuroimaging in refractory partial seizures: comparison of PET,
CT and MRI. Neurology. 1986; 36: 750–759.
39. DeCarli C., McIntosh A.R., Blaxton T.A. Use of Positron
emission tomography for the evaluation of epilepsy.
Neuroimag. Clin. N. Am. 1995; 5: 623–645.
40. Engel J. Epileptic seizures and syndromes; Ed. Wolf P.
London, 1994. 359–368.
41. Engel J., Kuhl D.E., Phelps M.E. et al. Local cerebral
metabolism during partial seizures. Neurology. 1983; 33:
400–413.
42. Engel J.Jr. Classification pf international leaque against
epilepsy: time for reappraisal. Epilepsia. 1998; 39:
1014–1017.
43. Franck G., Sadzot B., Salmon E. et al. Regional cerebral
blood flow and metabolic rates in human focal epilepsy
and status epilepticus. Advances in neurology; Ed.
DelgadoEscueta A.V., Ward A.A., Woodbury D.M., Porter
R.J. New York: Raven Press, 1986; 44: 935–948.
44. Hikima A., Mochizuki H., Oriuchi N. et al. Semiquantitative
analysis of interictal glucose metabolism between generalized epilepsy and localization related epilepsy. Ann.
Nucl. Med. 2004; 18: 579–584.
45. John S.D., Lee D.S., Lee S.K. et al. Positron Emission
Tomography studies of cerebral blood flow and glucose
metabolism. Epilepsia. 1997; 38 (10): 42–47.
46. Arnold S., Schlaug G., Niemann H. et al. Tomography of
interictal glucose hypermetabolism in unilateral mesiotemporal epilepsy. Neurology. 1996; 46: 1422–1430.
47. Bumcke I., Beck H., Lie A.A.et al. Molecular neuropathology of human mesial temporal lobe epilepsy. Epilepsy
Res. 1999; 36: 205–223.
48. Chungani H.T., Shewmon D.A., Khanna S. et al. Interictal
and postictal focal metabolism on positron emission
tomography. Pediatric. Neurol. 1993; 9: 10–15.
49. Kuhl D.E., Engel J., Phelps M.E. et al. Epileptic patterns of
local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and
13NH3. Ann. Neurol. 1980; 8: 348–360.
50. Pfund Z., Chugani D.C., Juhasz C. et al. Evidence for coupling between glucose metabolism and glutamate cycling
using FDG PET and 1H magnetic resonance spectroscopy
in patients with epilepsy. J. Cereb. Blood Flow Metab.
2000; 20 (5): 871–878.
51. Duncan J.S. Neuroimaging methods to evaluate the etiology and consequences of epilepsy. Review. Epilepsy Res.
2002; 50 (1–2): 131–140.
52. Mehta A.K., Ticku M.K. An update on GABAA receptors.
Brain Res. Rev. 1999; 29: 196–217.
53. Savic I., Ingvar M., StoneElander S. Comparison of [11C]
flumazenil and [18F] FDG as PET markers of epileptic foci.
J. Neurol. Neurosurg. Psychiat. 1993; 56: 615–621.
54. Koepp M.J., Richardson M.P., Labbe C. et al. 11C-flumazenil PET, volumetric MRI and quantitative pathology in
mesial temporal lobe epilepsy. Neurology. 1997; 49 (2):
7–10.
55. Schadrack J., Willoch F., Platzer S. et al. Opioid receptors
in the human cerebellum: evidence from [11C] diprenorphine PET, mRNA expression and autoradiography.
Neuroreport. 1999; 10: 619–624.
56. Meldrum B.S. Neurotransmission in epilepsy . Epilepsia.
1995; 36: 30–35.
57. Glass M., Dragunow M. Neurochemical and morphological changes associated with human epilepsy. Brain Res.
Rev. 1995; 21: 29–41.
The aim of the study is to analyze the current state of radiation diagnosis of epilepsy using positron emission tomography (PET) in comparison with other imaging methods. The review provides data on the role of various neurotransmitter systems in the pathogenesis of epilepsy. The possibility of PET with 18@Ffluorodeoxyglucose and radiopharmaceuticals for studying of the various neurotransmitter systems in the diagnosis and assessment of treatment efficacy of pharmacoresistant temporal and extratemporal epilepsy is discussed in detail.
Keywords:
positron emission tomography, epilepsy, magnetic resonance imaging, radiopharmaceutical, mediator systems.