Выход
Вход/Login
 
E-mail
Пароль/Password
Забыли пароль?
Введите E-mail и жмите тут. Пароль будет выслан на указанный адрес
Войти (LogIn)

 

Если вы первый раз здесь, то зарегистрируйтесь

Регистрация/Sign Up
Полное имя (Ф И О)/Full name
E-mail
Телефон/Phone
Зарегистрироваться,
на ваш E-mail будет выслан временный пароль

Нажимая кнопку Зарегистрироваться, вы соглашаетесь с Правилами сайта и Политикой Конфиденциальности http://vidar.ru/rules.asp

 

Медицинская литература. Новинки


 

 

 

 

 

 
вce журналы << Медицинская визуализация << 2016 год << №6 <<
стр.15
отметить
статью

ПЭТ/КТ с 18F-ФЭТ в дифференциальной диагностике рецидивов и постлучевых изменений при метастатическом поражении головного мозга

Люосев А. С., Долгушин М. Б., Пронин А. И., Оджарова А. А., Михайлов А. И., Бекяшев А. Х., Невзоров Д. И., Нечипай Э. А., Ильялов С. Р.
Вы можете загрузить полный текст статьи в формате pdf
Люосев Антон Сергеевич - научный сотрудник отделения позитронной эмиссионной томографии НИИ КиЭР ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России, v24seven@gmail.com, 115478 Москва, Каширское шоссе, д. 23
Долгушин Михаил Борисович - доктор мед. наук, профессор, заведующий отделением позитронной эмиссионной томографии НИИ КиЭР ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России, Москва, Россия
Пронин Артем Игоревич - научный сотрудник отделения позитронной эмиссионной томографии НИИ КиЭР ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России, Москва, Россия
Оджарова Акгуль Атаевна - канд. мед. наук, старший научный сотрудник отделения позитронной эмиссионной томографии НИИ КиЭР ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России, Москва, Россия
Михайлов Азат Игоревич - врач отделения позитронной эмиссионной томографии НИИ КиЭР ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России, Москва, Россия
Бекяшев Али Хасьянович - доктор мед. наук, профессор, заведующий отделением нейрохирургии НИИ КО ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России, Москва, Россия
Невзоров Денис Игоревич - инженер-радиохимик отделения позитронной эмиссионной томографии НИИ КиЭР ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России, Москва, Россия
Нечипай Эмилия Андреевна - врач рентгенод

Цель исследования: оценка возможностей ПЭТ/КТ с 18F-ФЭТ в дифференциальной диагностике рецидивов от постлучевых изменений у больных с метастатическим поражением головного мозга после стереотаксической радиохирургии (СРХ). Материал и методы. В исследование были включены результаты ПЭТ/КТ с 18F-ФЭТ и МРТ-исследований 23 пациентов с метастазами в головном мозге опухолей различной первичной локализации после проведенной СРХ на аппарате Гамма-нож. Количество патологических очагов, в которых были измерены количественные показатели, составило 48. Всем пациентам была выполнена трехэтапная ПЭТ/КТ с 18F-ФЭТ и минимум два МР-исследования в динамике. ПЭТ/КТ была выполнена в три этапа: первый - сразу после внутривенного введения 18F-ФЭТ, второй и третий этапы через 10 и 40 мин от момента введения соответственно. Данные оценивались визуально и с подсчетом показателей maxSUV1,2,3 и TBR1,2,3 соответственно трем этапам. Результаты. Накопление РФП в патологических очагах в подавляющем большинстве случаев (98%) характеризовалось более высокими значениями maxSUV1,2,3 относительно непораженного вещества головного мозга и только в одном случае накопление не превышало фоновое. Средние значения TBR1,2,3 были выше при рецидивах метастазов, чем при изменениях смешанного характера и лучевом некрозе. Определена значимость первого этапа сканирования с вычислением TBR1 - при рецидиве значения превышали 2,0, при смешанных изменениях и некрозе значения были ниже 2,0. Дополнительную информацию дает графический анализ динамики TBR1,2,3, который также позволяет дифференцировать смешанные изменения и постлучевой некроз по вектору кривой. Заключение. Комплексный анализ значения TBR1 и типа кривой является более точным критерием, чем одиночный анализ maxSUV1,2,3 в патологическом участке. В случае выявления рецидива возможно определение наиболее активного участка, что играет важную роль при планировании проведения повторной СРХ. Выявление смешанного характера изменений имеет прогностический характер и в большинстве случаев подразумевает динамический контроль.

Ключевые слова:
ПЭТ/КТ, 18F-ФЭТ, метастазы, головной мозг, некроз, стереотаксическая радиохирургия, PET/CT, 18F-FET, metastases, MRI, necrosis, stereotactic radiosurgery

Литература:
1.Gagliardi F.M., Mercuri S. Single metastases in the brain: late results in 325 cases. Acta Neurochirurg. 1983; 68 (3-4): 253-262.
2.Oneschuk D., Bruera E. Palliative management of brain metastases. Supportive care in cancer. 1998; 6 (4): 365-372.
3.Soffietti R., Ruda R., Mutani R. Management of brain metastases. J. Neurol. 2002; 249 (10): 1357-1369.
4.Мельникова Е.А. Метастазы опухолей в головной мозг. Нейрохирургия. 2005; 3: 61-65.
5.Vecht C.J. Clinical management of brain metastasis. J. Neurol. 1998; 245 (3): 127-131.
6.Голанов А.В., Банов С.М., Ветлова Е.Р. и др. Радиохирургическое лечение метастазов в головной мозг. Результаты одноцентрового ретроспективного исследования. Злокачественные опухоли. 2015; 4 (спец. выпуск. 2): 58-65.
7.Suh J.H. Stereotactic radiosurgery for the management of brain metastases. New Engl. J. Med. 2010; 362 (12): 1119-1127.
8.Kano H., Kondziolka D., Lobato-Polo J. et al. T1/T2 matching to differentiate tumor growth from radiation effect safter stereotactic radiosurgery. Neurosurgery. 2010; 66 (3): 486-492.
9.Dooms G.C., Hecht S., Brant-Zawadzki M. et al. Brain radiation lesions: MR imaging. Radiology. 1986; 158 (1): 149-155.
10.Galldiks N., Stoffels G., Filss C.P. et al. Role of O-(2-(18) F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J. Nucl. Med. 2012; 53 (9): 1367-1374.
11.Davis P.C., Hudgins P.A., Peterman S.B. et al. Diagnosis of cerebral metastases: double-dose delayed CT vs contrastenhanced MR imaging. Am. J. Neuroradiol. 1991; 12 (2): 293-300.
12.Schellinger P.D., Meinck H.M., Thron A. Diagnostic accuracy of MRI compared to CCT in patients with brain metastases. J. Neurooncol. 1999; 44 (3): 275-281.
13.Palumbo B. Brain tumour recurrence: brain single-photon emission computerized tomography, PET and proton magnetic resonance spectroscopy. Nucl. Med. Communications. 2008; 29 (8): 730-735.
14.Kickingereder P., Dorn F., Blau T. et al. Differentiation of local tumor recurrence from radiation-induced changes after stereotactic radiosurgery for treatment of brain metastasis: case report and review of the literature. Radiat. Oncol. 2013; 8 (1): 1-8.
15.Galldiks N., Stoffels G., Ruge M.I. et al. Role of O-(2-(18) F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with lowgrade glioma. J. Nucl. Med. 2013; 54 (12): 2046-2054.
16.Palumbo B., Buresta T., Nuvoli S. et al. SPECT and PET serve as molecular imaging techniques and in Vivo biomarkers for brain metastases. Int. J. Molec. Sci. 2014; 15 (6): 9878-9893.
17.Singhal T., Narayanan T.K., Jain V. et al. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Molec. Imaging Biol. 2008; 10 (1): 1-8.
18.Gulyas B., Halldin C. New PET radiopharmaceuticals beyond FDG for brain tumor imaging. The quarterly journal of nuclear medicine and molecular imaging: official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of...2012; 56 (2): 173-190.
19.Позитронная эмиссионная томография: руководство для врачей: Под ред. А.М. Гранова, Л.А. Тютина. СПб.: Фолиант, 2008. 610 с.
20.Tsuyuguchi N., Sunada I., Iwai Y. et al. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J. Neurosurg. 2003; 98 (5): 1056-1064.
21.Terakawa Y., Tsuyuguchi N., Iwai Y. et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J. Nuc. Med. 2008; 49 (5): 694-699.
22.Grosu A.L., Astner S.T., Riedel E. et al. An Interindividual Comparison of O-(2-[18F] Fluoroethyl)-L-Tyrosine (FET)-and L-[Methyl-11C] Methionine (MET)-PET in Patients With Brain Gliomas and Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2011; 81 (4): 1049-1058.
23.Ильялов С.Р. Стереотаксическая радиохирургия внутримозговых метастазов рака с применением установки гамма-нож: Дисс. … канд. мед. наук. М., 2008. 148 c.
24.Narang J., Jain R., Arbab A.S. et al. Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neurooncology. 2011; 29: nor075.
25.Patel T.R., McHugh B.J., Bi W.L. et al. A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. Am. J. .Neuroradiol. 2011; 32 (10): 1885-1892.
26.Shah R., Vattoth S., Jacob R. et al. Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics. 2012; 32 (5): 1343-1359.
27.Verma N., Cowperthwaite M.C., Burnett M.G. et al. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neurooncology. 2013; 16: nos307.
28.Ruzevick J., Kleinberg L., Rigamonti D. Imaging changes following stereotactic radiosurgery for metastatic intracranial tumors: differentiating pseudoprogression from tumor progression and its effect on clinical practice. Neurosurg. Rev. 2014; 37 (2): 193-201.
29.Насхлеташвили Д.Р., Абсалямова О.В., Алешин В.А. и др. Практические рекомендации по лекарственному лечению метастатических опухолей головного мозга. Злокачественные опухоли. 2015; 4 (спец. выпуск 2): 80-98.
30.Журавлева М.А. Возможности перфузионной КТ в оценке эффективности комбинированного лечения глиальных опухолей головного мозга: Дисс. … канд. мед. наук. СПб., 2015. 182 с.
31.Peterson A.M., Meltzer C.C., Evanson E.J. et al. MR Imaging Response of Brain Metastases after Gamma Knife Stereotactic Radiosurgery 1. Radiology. 1999; 211 (3): 807-814.
32.Shaw E., Scott C., Souhami L. et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int. J. Radiat. Oncol. Biol. Phys. 2000; 47 (2): 291-298.
33.Ross D.A., Sandler H.M., Balter J.M. et al. Imaging changes after stereotactic radiosurgery of primary and secondary malignant brain tumors. J. Neurooncol. 2002; 56 (2): 175-181.
34.Kreth F.W., Muacevic A., Medele R. et al. The risk of haemorrhage after image guided stereotactic biopsy of intra-axial brain tumours - a prospective study. Acta Neurochir. 2001; 143 (6): 539-546.
35.Heper A.O., Erden E., Savas A. et al. An analysis of stereotactic biopsy of brain tumors and nonneoplastic lesions: a prospective clinicopathologic study. Surg. Neurol. 2005; 64: S82-S88.
36.Di Chiro G., DeLaPaz R.L., Brooks R.A. et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology. 1982; 32 (12): 1323.
37.Belohlavek O., Simonova G., Kantorova I. et al. Brain metastases after stereotactic radiosurgery using the Leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression? Eur. J. Nucl. Med. Molecul. Imaging. 2003; 30 (1): 96-100.
38.Lee H.Y., Chung J.K., Jeong J.M. et al. Comparison of FDG-PET findings of brain metastasis from non-small-cell lung cancer and small-cell lung cancer. Ann. Nucl. Med. 2008; 22 (4): 281-286.
39.Савинцева Ж.И., Скворцова Т.Ю., Бродская З.Л. Современные методы нейровизуализации в дифференциальной диагностике лучевых поражений головного мозга у больных с церебральными опухолями. Лучевая диагностика и терапия. 2012; 1 (3): 15-23.
40.Трофимова Т.Н., Трофимов Е.А. Современные стратегии лучевой диагностики при первичных опухолях головного мозга. Практическая онкология. 2013; 14 (3): 141-147.
41.von Schulthess G.K., ed. Molecular anatomic imaging: PET-CT and SPECT-CT integrated modality imaging. Lippincott Williams & Wilkins, 2007: 150-152.
42.Hutterer M., Nowosielski M., Putzer D. et al. [18F]-fluoroethyl-L-tyrosine PET: a valuable diagnostic tool in neurooncology, but not all that glitters is glioma. Neurooncology. 2013; 341-351.
43.Unterrainer M., Schweisthal F., Suchorska B. et al. Serial 18F-FET PET imaging of primarily 18F-FET-negative glioma-does it make sense? J. Nucl. Med. 2016: jnumed-115.
44.Wyss M., Hofer S., Bruehlmeier M. et al. Early metabolic responses in temozolomide treated low-grade glioma patients. J. Neurooncol. 2009; 95 (1): 87-93.
45.Piroth M.D., Pinkawa M., Holy R. et al. Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme-a dosimetric comparison. Radiat. Oncol. 2009; 23; 4 (1):1.
46.Niyazi M., Geisler J., Siefert A. et al. FET-PET for malignant glioma treatment planning. Radiother. Oncol. 2011; 99 (1): 44-48.
47.Heiss P., Mayer S., Herz M. et al. Investigation of transport mechanism and uptake kinetics of O-(2-[18F] fluoroethyl)-L-tyrosine in vitro and in vivo. J. Nucl. Med. 1999; 40 (8): 1367-1373.
48.Langen K.J., Jarosch M., Muhlensiepen H. et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl. Med. Biol. 2003; 30 (5): 501-508.
49.Langen K.J., Hamacher K., Weckesser M. et al. O-(2-[18F] fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl. Med. Biol. 2006; 33 (3): 287-294.
50.del Amo E.M., Urtti A., Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Еur. J. Pharmaceut. Sci. 2008; 35 (3): 161-174.
51.Jensen M.L. Image Analysis of FET PET scans performed during Chemo-Radiotherapy of Glioblastoma Multiforme. Faculty of health sciences university of Copenhagen. 2012: 8-14.
52.Juhasz C., Dwivedi S., Kamson D.O. et al. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Molec. Imaging. 2014; 13 (6): 7290-2014.
53.Stober B., Tanase U., Herz M. et al. Differentiation of tumour and inflammation: characterisation of [methyl-3H] methionine (MET) and O-(2-[18F] fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur. J. Nucl. Med. Molec. Imaging. 2006; 33 (8): 932-939.
54.Floeth F.W., Sabel M., Stoffels G. et al. Prognostic value of 18F-fluoroethyl-L-tyrosine PET and MRI in small nonspecific incidental brain lesions. J. Nucl. Med. 2008; 49 (5): 730-737.
55.Tonn J.C., Westphal M., Rutka J.T. (eds.). Oncology of CNS tumors. Springer Science & Business Media. 2010; 20: 345-361.
56.Popperl G., Gotz C., Rachinger W. et al. Value of O-(2-[18F] fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur. J. Nucl. Med. Molec. Imaging. 2004; 31 (11): 1464-1470.
57.Pichler R., Dunzinger A., Wurm G. et al. Is there a place for FET PET in the initial evaluation of brain lesions with unknown significance? Eur. J. Nucl. Med. Molec. Imaging. 2010; 37 (8): 1521-1528.
58.Weckesser M., Langen K.J., Rickert C.H. et al. O-(2-[18F] fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur. J. Nucl. Med. Molec. Imaging. 2005; 32 (4): 422-429.
59.Popperl G., Kreth F.W., Herms J. et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J. Nucl. Med. 2006; 47 (3): 393-403.
60.Popperl G., Kreth F.W., Mehrkens J.H. et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur. J. Nucl. Med. Molec. Imaging. 2007; 34 (12): 1933-1942.
61.Kunz M., Thon N., Eigenbrod S. et al. Hot spots in dynamic18FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neurooncology. 2011; 13 (3): 307-316.
62.Calcagni M.L., Galli G., Giordano A. et al. Dynamic O-(2-[18F] fluoroethyl)-L-tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin. Nucl. Med. 2011; 36 (10): 841-847.
63.Piroth M.D., Liebenstund S., Galldiks N. et al. Monitoring of Radiochemotherapy in Patients with Glioblastoma Using O-(2-[18F] Fluoroethyl)-L-Tyrosine Positron Emission Tomography: Is Dynamic Imaging Helpful? Molec. Imaging. 2013; 12 (6): 7290-2013.
64.Pyka T., Gempt J., Ringel F. et al. Prediction of glioma recurrence using dynamic 18F-fluoroethyltyrosine PET. Am. J. Neuroradiol. 2014; 35 (10): 1924-1929.

PET/CT with 18F-FET in Differential Diagnosis of Recurrence and Post-Radiation Changes in Metastatic Brain Lesions

Lyuosev A. S., Dolgushin M. B., Pronin A. I., Odzharova A. A., Mikhailov A. I., Bekyashev A. K., Nevzorov D. I., Nechipai E. A., Ilyalov S. R.

Evaluation of the potential of PET/CT with 18F-FET in differential diagnosis recurrence from post-radiation changes in patients with metastatic brain lesions after stereotactic radiosurgery. Materials and methods. The study included results of PET/CT with 18F-FET and MRI studies of 23 patients with brain metastases of primary tumors different localization after Gamma knife. Number of lesions in which was measured quantitative indicators were 48. All patients underwent three-phase PET/CT with 18F-FET and at least two dynamic MRI. PET/CT was performed in three stages: the first immediately after administration of 18F-FET, the second and third in 10 and 40 min after administration respectively. The data were evaluated visually with calculation of maxSUV1,2,3 and TBR1,2,3 respectively to the three phases of the studies. Results. Accumulation of 18F-FET in the pathological lesions in the majority of cases (98%) were characterized by higher values of maxSUV1,2,3 relatively to the unaffected substance of the brain and only in one case the accumulation did not exceed background. The average values of the TBR1,2,3 were higher in the recurrence of metastases than in mixed and radiation necrosis changes. Determined the significance of the first stage of the scan with calculation TBR1 - values in the recurrence were higher than 2.0, than mixed changes and necrosis values that were below 2.0. Additional information gives graphical analysis of dynamics of TBR1,2,3, which also allows to differentiate mixed changes and postradiation necrosis by the vector curve. Conclusion. Comprehensive analysis of TBR1 values and curve type are more accurate criteria than single analysis maxSUV1,2,3 in the pathological area. In case of recurrence it is possible to determine the most active site, which plays an important role in planning for repeated radiosurgery. Identification of the mixed nature of changes have a predictive character and, in most cases, involve dynamic control.

Keywords:
ПЭТ/КТ, 18F-ФЭТ, метастазы, головной мозг, некроз, стереотаксическая радиохирургия, PET/CT, 18F-FET, metastases, MRI, necrosis, stereotactic radiosurgery

Новости   Магазин   Журналы   Контакты   Правила   Доставка   О компании  
ООО Издательский дом ВИДАР-М, 2024