Новости | Магазин | Журналы | Контакты | Правила | Доставка | |
Вход Регистрация |
В данном обзоре литературы проводится анализ исследований патологии венозного кровотока в системе нижней полой вены с помощью магнитно-резонансной томографии (Magnetic Resonance Imaging - MRI). Особое внимание уделяется предпринятым попыткам использования этого метода в диагностике хронических заболеваний вен нижних конечностей (Chronic Venous Disorders - CVD) посредством проведения магнитно-резонансной венографии (MRV). Исторически и методически показано поэтапное внедрение методов MRV в диагностику тромбоза вен нижних конечностей (LEDVT) и венозного тромбоэмболизма (VTE). Методы бесконтрастной MRV, основанные на эффекте потока крови, как и в случае применения MR-Angiography, подразделяются на две принципиальные группы: методы, основанные на амплитудных эффектах время-пролета (Time-of-Flight - TOF), и методы, основанные на фазовых эффектах (Phase Contrast - PC). Техники проведения бесконтрастной MRV подробно описаны. Уделено внимание импульсным последовательностям, используемым в мире для визуализации вен при бесконтрастной MRV в режиме TOF и РС (FR-FBI, SPADE, SSFP), и методам постобработки изображения: 2D-TOF MRV FLASH, 2D-TOF MRV CRASS, FIPS, VED, VENS. В основе выполнения контрастно-усиленной MRV (Contrast-Enhanced MRV - CE MRV) лежит использование контрастных препаратов “пула крови”, особенностью которых является способность образовывать устойчивые соединения с белками плазы крови. В мире в качестве контрастных препаратов для CE MRV используются вещества, обладающие магнитными и супермагнитными свойствами на основе гадолиния или оксида железа. Результатом использования данных контрастных препаратов является повышение качества визуализации за счет лучшего соотношения сигнал/шум (Signal to Noise Ratio - SNR) с использованием обработки изображения в режиме 3D (3D-CE MRV) с использованием быстрых последовательностей: GRE, TFLAS, VESPA, CAT в условиях проведения прямой и непрямой СE MRV. Отмечено, что в последнее время в отношении некоторых линейных контрастных препаратов, содержащих гадолиний, в их дальнейшем использовании предприняты определенные ограничения. В связи с этим с целью проведения СE MRV рационально применять только циклические контрастные вещества, чтобы избежать неоправданных рисков. Бесконтрастная MRV вновь получила интенсивное развитие в последние годы в связи с введенными ограничениями. Одним из таких методов стал прямая визуализация тромба (Direct Thrombus Imaging - DTI или Magnetic Resonance Direct Thrombus Imaging - MRDTI) с использование быстрых импульсных последовательностей: bSSFP, BBTI, DANTE. Последние исследования в отношении этого метода диагностики LEDVT были опубликованы в 2019 г. и показали высокую диагностическую ценность. В отношении всех наиболее часто используемых методов проведения MRV показана специфичность и чувствительность. Дальнейшее проведение MRV у пациентов с CVD и DVT является перспективной диагностической задачей в современной флебологии. MRV должна внедряться в клиническую практику более активно, чем это происходит сегодня.
Ключевые слова:
магнитно-резонансная томография, магнитно-резонансная флебография, компьютерная томография, компьютерно-томографическая флебография, хронические заболевания вен, диагностика тромбоза вен нижних конечностей, варикозное расширение вен, анатомическое строение вен нижних конечностей, magnetic resonance imaging, magnetic resonance venography, computed tomography, computed tomography venography, chronic
Литература:
1.Criqui M.H., Jamosmos M., Fronek A. Chronic venous disease in an ethnically diverse population: The San Diego Population Study. Submitted 2002, San Diego population study. J. Vasc. Surg. 2004; 37 (5): 823-828. https://doi.org/10.1093/aje/kwg166
2.Eklof B., Perrin M., Delis K.T., Rutherford R.B., Glovieszki P. Updated terminology of chronic venous disorders: the Vein-Term transatlantic interdisciplinary consensus document. J. Vasc. Surg. 2009; 49 (2): 498-501. https://doi.org/10.1016/j.jvs.2008.09.014
3.Yamaki T., Nozaki M., Sakurai H., Takeuchi M., Soejima K., Kono T. Presence of lower limb deep vein thrombosis and prognosis in patients with symptomatic pulmonary embolism: preliminary report. Eur. J. Vasc. Endovasc. Surg. 2009; 37: 225-231. https://doi.org/10.1016/j.ejvs.2008.08.018
4.Goldhaber S.Z., Bounameaux H. Pulmonary embolism and deep vein thrombosis. Lancet. 2012; 379: 1835-1846. https://doi.org/10.1016/s0140-6736(11)61904-1
5.Silverstein M.D., Heit J.A., Mohr D.N., Petterson T.M., O''Fallon M., Melton L.J. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch. Intern. Med. 1998; 158: 585-593. https://doi.org/10.1001/archinte.158.6.585
6.Houman F.M., Lopes R.D., Stashenko G.J. Treatment of venous thromboembolism: guidelines translated for the clinician. J. Thromb. Thrombolysis. 2009; 28: 270-275. https://doi.org/10.1007/s11239-009-0374-7
7.Kearon C. Natural history of venous thromboembolism. Circulation. 2003; 107: 122-130. https://doi.org/10.1161/01.cir.0000078464.82671.78
8.Yamaki T., Nozaki M., Sakurai H., Takeuchi M., Soejima K., Kono T. Uses of different D-dimer levels can reduce the need for venous duplex scanning to rule out deep vein thrombosis in patients with symptomatic pulmonary embolism. J. Vasc. Surg. 2007; 46: 526-532. https://doi.org/10.1016/j.jvs.2007.05.026
9.Girard P., Sanchez O., Leroyer C., Musset D., Meyer G. Deep venous thrombosis in patients with acute pulmonary embolism: prevalence, risk factors, and clinical significance. Chest. 2005; 128: 1593-1600. https://doi.org/10.1378/chest.128.3.1593
10.Christie A., Rodidti G. Radiological Imaging and Intervention in Venous Thrombosis. Chapter in Book: Deep Vein Thrombosis, edited by Cheng Gregory. Intech. Open. 2012: 78-98. https://www.intechopen.com.https://doi.org/10.5772/33605
11.Spritzer C.E., Arata M.A., Freed K.S. Isolated pelvic deep venous thrombosis: relative frequency as detected with MR imaging. Radiology. 2001; 219: 521-525. https://doi.org/10.1148/radiology.219.2.r01ma25521
12.Miller N., Satin R., Tousignant L., Sheiner N.M. A prospective study comparing duplex scan and venography for diagnosis of lower-extremity deep vein thrombosis. Cadiovasc. Surg. 1996; 4 (4): 505-508. https://doi.org/10.1016/0967-2109(95)00148-4
13.Suwanabol P.A., Tefera G., Schwarze M.L. Syndromes associated with the deep veins: phlegmasia cerulean dolens, May-Thurner syndrome, and nutcracker syndrome. Perspect. Vasc. Surg. Endovasc. Ther. 2010; 22 (4): 223-230. https://doi.org/10.1177/1531003511400426
14.Marston W., Fish D., Unger J., Keagy B. Incidence of and risk factors for iliocaval venous obstruction in patients with active or healed venous leg ulcers. J. Vasc. Surg. 2011; 53 (5): 1303-1308. https://doi.org/10.1016/j.jvs.2010.10.120
15.Oguzkurt L., Ozkan U., Ulusan S., Tercan F., Koc Z. Compression of the Left Common Iliac Vein in Asymptomatic Subjects and Patients with Left Iliofemoral Deep Vein Thrombosis. J. Vasc. Int. Radiol. 2008; 19 (3): 366-370. https://doi.org/10.1016/j.jvir.2007.09.007
16.Yin-Chen H., Yao-Kuang H., Li-Sheng H., Pang-Yen C., Chen-Wei C. Using non-contrast-enhanced magnetic resonance venography for the evaluation of May-Thurner syndrome in patients with renal insufficiency. Medicine. 2019; 98 (52): 18427. https://doi.org/10.1097/MD.0000000000018427
17.Davidson B.L., Elliot C.G., Lensing A.W. Low accuracy of color Doppler ultrasound in the detection of proximal leg vein thrombosis in asymptomatic high-risk patients: the RD heparin arthroplasty group. Ann. Int. Med. 1992; 117: 735-738. https://doi.org/10.7326/0003-4819-117-9-735
18.Holtz D.J., Debatin J.K., McKinnon G.C., Unterweger M., Widermuth S. MR venography of the calf: value of flowenhanced time-of-flight echoplaner imaging. Am. J. Roent genol. 1996; 166 (3): 663-668. https://doi.org/10.2214/air.166.3.8623646
19.Wells P.S., Lensing A.W., Davidson B.L., Prins M.H., Hirsh J. Accuracy of ultrasound for the diagnosis of deep venous thrombosis in asymptomatic patients after orthopedic surgery: a meta-analysis. Ann. Intern. Med. 1995; 122: 47-52. https://doi.org/10.7326/0003-4819-122-1-199501010-00008
20.Aschauer M., Deutschmann H.A., Stollberger R., Hausegger K.A., Obernoster A., Schollnast H., Ebner F. Value of blood pool contrast agent in MR venography of the lower extremities and pelvis: Preliminary results in 12 patients. J. Magn. Res. Med. 2003; 50 (5): 993-1002. https://doi.org/10.1002/mrm.10607
21.Leen E., Averkiou M., Arditi M., Burns P., Bokor D., Gauthier T., Kono Y., Lucidarme O. Dynamic contrast enhanced ultrasound assessment of the vascular effects of novel therapeutics in early stage trials. Eur. Radiol. 2012; 22: 1442-1450. https://doi.org/10.1007/s00330-011-2373-2
22.Hocke M., Dietrich C.F. New technology-combined use of 3D contrast enhanced endoscopic ultrasound techniques. Ultraschall Med. 2011; 32 (3): 317-318. https://doi.org/10.1055/s-0031-1274695
23.Claudon M., Cosgrove D., Albrecht T. et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) - Update 2008. Ultraschall Med. 2008; 29(1): 28-44. https://doi.org/10.1055/s-2007-963785
24.Dietrich C.F., Averkiou M., Barr R.G. et al. How to perform Contrast-Enhanced Ultrasound - CEUS. Ultrasound Int. Open. 2018; 4 (1): 2-15. https://doi.org/10.1055/s-0043-123931
25.Jenssen C., Hocke M., Fusaroli P. et al. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part IV - EUSguided Interventions: General aspects and EUS-guided sampling (Long Version). Ultraschall Med. 2015; 37 (2): 33-76. https://doi.org/10.1055/s-0035-1553785
26.Dietrich C.F., Averkiou M., Barr R.G. et al. How to perform Contrast-Enhanced Ultrasound - CEUS. Ultrasound Int. Open. 2018; 4 (1): 2-15. https://doi.org/10.1055/s-0043-123931
27.Delis K.T., Bjarnanson H., Wennberg P.W. Successfuliliac vein and inferior vena cava stenting ameliorates venous claudication and improves venous outflow, calf muscle pump function, and clinical status in post-thrombotic syndrome. Ann. Surg. 2007; 245 (1): 130-139. https://doi.org/10.1097/01.sla.0000245550.36159.93
28.Garg N., Gloviczki P., Karimi K.M., Duncan A.A., Bjarnason H., Kalra M., Oderich G.S., Bower T.C. Factors affecting outcome of open and hybrid reconstructions for malignant obstruction of iliofemoral veins and inferior vena. J. Vasc. Surg. 2011; 53 (2): 383-393. https://doi.org/10.1016/j.jvs.2010.08.086
29.Ghaye B., Szapiro D., Willems V., Dondelinger R.F. Pitfalls in CT venography of lower limbs and abdominal veins. Am. J. Roentgenol. 2002; 178 (6): 1465-1471. https://doi.org/10.2214/ajr.178.6.1781465
30.Shi W.Y., Wang L.W., Wang S.J., Yin X.D., Gu J.P. Combined Direct and Indirect CT Venography (Combined CTV) in Detecting Lower Extremity Deep Vein Thrombosis. Medicine. 2016; 95 (11): 1-7. https://doi.org/10.1097/md.0000000000003010
31.Loud P.A., Katz D.S., Bruce D.A., Klippenstein D.L., Grossman Z.D. Deep venous thrombosis with suspected pulmonary embolism: detection with combined CT veno graphy and pulmonary angiography. Radiology. 2001; 219 (2): 498-502. https://doi.org/10.1148/radiology.219.2.r01ma26498
32.Righini M., Le gal G., Aujesky D. et al. Diagnosis of pulmonary embolism by multidetector CT alone or combined with venous ultrasonography of the leg: a randomized non-inferiority trial. Lancet. 2008; 371 (9621): 1343-1352. https://doi.org/10.1016/s0140-6736(08)60594-2
33.Kalva S.P., Jagannathan J.P., Hahn P.F., Wicky S.T. Venous thromboembolism: indirect CT venography during CT pulmonary angiography should the pelvis be imaged? Radiology. 2008; 246: 605-611. https://doi.org/10.1148/radiol.2462070319
34.Davies A.H. Management of Chronic Venous Disease. Clinical Practice Guidelines of European Society for Vascular Surgery (ESVS). Eur. J. Endovasc. Surg. 2016; 51 (1): 156. https://doi.org/10.1016/j.ejvs.2015.09.024
35.Uhl J.F, Verdeille S, Martin-Bouyer Y. Three-dimensional spiral CT venography for the preoperative assessment of varicose patients. Vasa. 2003; 32 (2): 91-94. https://doi.org/10.1024/0301-1526.32.2.91
36.Uhl J.F., Caggiati A. Three-dimensional evaluation of the venous system in varicose limbs by multidetector spiral CT. In: Catalano C. Passariello, eds. Multidetector-Row CT Angiography. Berlin; Heidelberg: Springer, 2005: 199-206. https://doi.org/10.1007/3-540-26984-3_15
37.Uhl J.F. A New Tool to Study the 3D Venous Anatomy of the Human Embryo: The Computer-Assisted Anatomical Dissection. J. Vasc. Surg: Venous and Limphatic Disorders. 2014; 2 (1): 111-112. https://doi.org/10.1016/j.jvsv.2013.10.025
38.Uhl J.F., Gillot C. Anatomy of the foot venous pump: physiology and influence on chronic venous disease. Phlebology: J. Venous Dis. 2012; 27 (5): 219-230. https://doi.org/10.1258/phleb.2012.012b01
39.Uhl J.F., Gillot C. Anatomy of the veno-muscular pumps of the lower limb. Phlebology: J. Venous Dis. 2015; 30 (3): 180-193. https://doi.org/10.1177/0268355513517686
40.Gloviczki P., Comerota A.J., Dalsing M.C., Eklof B.G., Gillespie D.L., Gloviczki M.L., Lohr J.M., McLafferty R.B., Meissner M.H., Murad M.H., Padberg F.T., Pappas P.J., Passman M.A., Raffetto J.D., Vasquez M.A., Wakefield T.W; Society for Vascular Surgery; American Venous Forum. The care of patients with varicose veins and associated chronic venous diseases: clinical practice guidelines of the society for vascular surgery and the American Venous Forum. J. Vasc. Surg. 2011; 53 (5): 2-48. https://doi.org/10.1016/j.jvs.2011.01.079
41.Schneider G., Prince M.R., Meaney J.F.M., Ho V.B. Magnetic Resonance Angiography. Techniques, Indications and Practical Applications, foreword by E.J. Potchen. Italia: Springer-Verlag, 2005. ISBN 88-470-0266-4. https://www.springer.com. https://doi.org/10.1007/b138651
42.Carpenter J.P., Holland G.A., Baum R.A., Owen R.S., Carpenter J.T., Cope C. Magnetic resonance venography for the detection of deep venous thrombosis: Comparison with contrast venography and duplex Doppler ultrasonography. J. Vasc. Surg. 1993; 18 (5): 734-741. https://doi.org/10.1016/0741-5214(93)90325-g
43.Spritzer C.E. Progress in MR imaging of the venous system. Perspect. Vasc. Surg. Endovasc. Ther. 2009; 21 (2): 105-116. https://doi.org/10.1177/1531003509337259
44.Laissy J.P., Cinqualbre A., Loshkajian A. Assessment of deep venous thrombosis in the lower limbs and pelvic: MR venography versus duplex Doppler sonography. Am. J. Roentgenol. 1996; 167: 971-975. https://doi.org/10.2214/ajr.167.4.8819396
45.Kanne J.P., Lalani T.A. Role of Computed Tomography and Magnetic Resonance Imaging for Deep Venous Throm bosis and Pulmonary Embolism. J. Circulation. 2004; 12 (1): 15-21. https://doi.org/10.1161/01.CIR.0000122871.86662.72
46.Nicolaides A.N., Kakkar W., Field E.S. The origin of deep venous thrombosis: a venographic study. Br. J. Radiol. 1971; 44: 653-663. https://doi.org/10.1259/0007-1285-44-525-653
47.Cronan J.J. Ultrasound evaluation of deep venous thrombosis. Semin. Roentgenol. 1992; 27 (1): 39-52. https://doi.org/10.1016/0037-198x(92)90045-4
48.Evans A.J., Sostman H.D., Knelson M.H., Spritzer C.E., Newman G.E., Paine S.S., Beam C.A. Detection of deep venous thrombosis: prospective comparison of MR imaging with contrast venography. Am. J. Roentgenol. 1993; 161: 131-139. https://doi.org/10.2214/ajr.161.1.8517292
49.Davidson B.L., Elliott G., Lensing A.W.A. Low accurancy of color Doppler ultrasound in the detection of proximal leg vein thrombosis in asymptomatic high-risk patients. Ann. Intern. Med. 1992; 117: 735-738. https://doi.org/10.7326/0003-4819-117-9-735
50.Wells P.S., Lensing S.W.A., Davidson B.L. Accuracy of ultrasound for the diagnosis of deep venous thrombosis in asymptomatic patients after orthopedic surgery. Ann. Intern. Med. 1995; 122: 47-53. https://doi.org/10.7326/0003-4819-122-1-199501010-00008
51.Dupas B., el Kouri D., de Fancal P., Planchon B., Pelter P. Angiomagnetic resonance imaging of iliofemorocaval venous thrombosis. Lancet. 1995; 346: 17-19. https://doi.org/10.1016/s0140-6736(95)92650-x
52.Gao J.H., Gore J.C. NMR signal from flowing nuclei in fast gradient-echo pulse sequences with refocusing. Phys. Med. Biol. 1994; 39 (12): 2305-23218. https://doi.org/10.1088/0031-9155/39/12/012
53.Oshinski J.N., Ku D.N., Pettigrew R.I. Turbulent fluctuation velocity: the most significant determinant of signal loss in stenotic vessels. Magn. Reson. Med. 1995; 33 (2): 193-199. https://doi.org/10.1002/mrm.1910330208
54.Evans A.J., Blinder R.A., Herfkens R.J., Spritzer C.E., Kuethe D.O., Fram E.K., Hedlund L.W. Effects of turbulence on signal intensity in gradient echo images. Invest. Radiol. 1988; 23 (7): 512-518. https://doi.org/10.1097/00004424-198807000-00006
55.Meckel S., Reisinger C., Bremerich J., Damm D., Wolbers M., Engelter S., Scheffler K., Wetzel S.G. Cerebral Venous Thrombosis: Diagnostic Accuracy of Combined, Dynamic and Static, Contrast-Enhanced 4D MR Venography. Am. J. Neuroradiol. 2010; 31 (3): 527-535. https://doi.org/10.3174/ajnr.a1869
56.Siegel J.M. Jr., Oshinski J.N., Pettigrew R.I., Ku D.N. Computational simulation of turbulent signal loss in 2D time-of-flight magnetic resonance angiograms. Magn. Reson. Med. 1997; 37 (4): 609-614. https://doi.org/10.1002/mrm.1910370421
57.Babiarz L.S., Romero J.M., Murphy E.K., Brobeck B., Schaefer P.W., Gonzalez R.G., Lev M.H. Contrast-Enhanced MR Angiography Is Not More Accurate Than Unenhanced 2D Time-of-Flight MR Angiography for Determining ?70% Internal Carotid Artery Stenosis. Am. J. Neuroradiol. 2009; 30 (4): 761-768. https://doi.org/10.3174/ajnr.a1464
58.Ono A., Murase K., Taniguchi T., Shibutani O., Takata S., Kobashi Y., Hashiguchi Y., Miyazaki M. Deep venous thrombosis: Diagnostic value of non-contrast-enhanced MR venography using electrocardiography triggered three-dimensional half-fourier FSE. Magn. Reson. Med. 2010; 64: 88-97. https://doi.org/10.1002/mrm.22374
59.Lindquist C.M., Karlicki F., Lawrence P., Strzelazyk J., Pawlyshyn N., Kirpatrick I. Utility of balanced streadystate free procession MR venography in the diagnosis of lower extremity deep venous thrombosis. Am. J. Roentg enol. 2010; 194: 1357-1364. https://doi.org/10.2214/ajr.09.3552
60.Plein S., Geenwood J., Ridgway J.P. Cardiovascular MR Manual. Springer International Publishing, 2015. ISBN 978-3-319-20940-1. https://doi.org/10.1007/978-3-319-20940-1
61.Ruehm S.G. MR Venography. Chapter in Book: Magnetic Resonance Angiography. Springer, 2005: 3-22.ISBN 88-470-0266-4
62.Bradley W.G. Jr., Waluch V. Blood flow: magnetic resonance imaging. J. Radiol. 1985; 154 (2): 443-450. https://doi.org/10.1148/radiology.154.2.3966131
63.Dumoulin C.L., Hart H.R. Jr. Magnetic resonance angiography. J. Radiol. 1986; 161 (3): 717-720. https://doi.org/10.1148/radiology.161.3.3786721
64.Edelman R.R., Wentz K.U., Mattle H., Zhao B., Liu C., Kim D., Laub G. Projection arteriography and venography: initial clinical results with MR. J. Radiol. 1989; 172 (2): 351-357. https://doi.org/10.1148/radiology.172.2.2748814
65.Lenz G.W., Haacke E.M., Masaryk T.J., Laub G. In plane vascular imaging: pulse sequence design and strategy. J. Radiol. 1988; 166 (3): 875-882. https://doi.org/10.1148/radiology.166.3.3340788
66.Frahm J., Merboldt K.D., Hanicke W., Gyngell M.L., Bruhn H. Rapid line scan NMR angiography. Magn. Reson. Med. 1988; 7: 79-87. https://doi.org/10.1002/mrm.1910070109
67.Constantinesco A., Mallet J.J., Bonmartin A., Lallot C., Briguet A. Spatial or flow velocity phase encoding gradients in NMR imaging. Magn. Reson. Imaging. 1984; 2: 335-340. https://doi.org/10.1016/0730-725x(84)90200-5
68.Edelman R.R., Zhao B., Liu C., Wentz K.U., Mattle H.P., Finn J.P., McArdle C. MR angiography and dynamic flow evaluation of the portal venous system. Am. J. Roentgenol. 1989. 153: 755-760. https://doi.org/10.2214/ajr.153.4.755
69.Pelc N.J., Herfkens R.J., Shimakawa A. Phase contrast cine magnetic resonance imaging. Magn. Reson. 1991; 7: 229-254. https://www.ncbi.nim.nih.gov
70.Saha P., Andia M.E., Modarai B. Magnetic resonance T1 relaxation time of venous thrombus is determined by iron processing and predicts susceptibility to lysis. Circulation. 2013; 128: 729-736. https://doi.org/10.1161/circulationaha.113.001371
71.Moody A.R., Pollock J.G., O’Connor A.R., Bagnall M. Lower-limb deep venous thrombosis: direct MR imaging of the thrombus. J. Radiol. 1998; 209 (2): 349-355. https://doi.org/10.1148/radiology.209.2.9807558
72.Westerbeek R.E., Van Rooden C.J., Tan M., van Gils A.P.G., Kok S., De Bats M.J., De Roos A., Huisman M.V. Magnetic resonance direct thrombus imaging of the evolution of acute deep vein thrombosis of the leg. J. Thromb. Haemost. 2008; 6: 1087-1092. https://doi.org/10.1111/j.1538-7836.2008.02986.x
73.Tan M., Mol G.C., van Rooden C.J. Magnetic resonance direct thrombus imaging differentiates acute recurrent ipsilateral deep vein thrombosis from residual thrombosis. Blood. 2014; 124: 623-627. https://doi.org/10.1182/blood-2014-04-566380
74.Treitl K.M., Treitl M., Kooijman-Kurfuerst H., Kammer N.N., Coppenrath E., Suderland E., Czihal M., Hoffmann U., Reiser M.F., Saam T. Three-dimensional black-blood T1-weighted tirbo spin-echo techniques for the diagnosis of deep vein thrombosis in comparison with contrastenhanced magnetic resonance imaging: a pilot study. Invest. Radiol. 2015; 50: 401-408. https://doi.org/10.1097/rli.0000000000000142
75.Mendichovszky I.A., Priest A.N., Bowden D.J., Hunter S., Joubert I., Hilborne S., Graves M.J., Baglin T., Lomas D.J. Combined MR direct thrombus imaging and non-contrast magnetic resonance venography reveal the evolution of deep vein thrombosis: a feasibility study. Eur. Radiol. 2017; 27: 2326-2332. https://doi.org/10.1007/s00330-016-4555-4
76.Guoxi Xie, Hanwei Chen, Xueping He, Jianke Liang, Wei Deng, Zhuonan He, Yufeng Ye. Black-blood thrombus imaging (BTI): a contrast-free cardiovascular magnetic resonance approach for the diagnosis of non-acute deep vein thrombosis. J. Cardiovasc. Magn. Reson. 2017; 19 (1). https://doi.org/10.1186/s12968-016-0320-8
77.Hanwei C., Xueping H., Guoxi X., Jianke L., Yufeng Y., Wei D., Zhuonan H., Dexiang L., Debiao L., Xin L., Zhaoyang F. Cardiovascular magnetic resonance black-blood thrombus imaging for the diagnosis of acute deep vein thrombosis at 1,5 Tesla. J. Cardiovasc. Magn. Reson. 2018; 20 (1). https://doi.org/10.1186/s12968-018-0459-6
78.Meaney J.F., Johansson L.O., Ahlstrom H., Prince M.R. Pulmonary magnetic resonance angiography. J. Magn. Reson. Imaging. 1999; 10: 326-338. https://doi.org/10.1002/(sici)1522-2586(199909)10
79.Zhang H.L., Kaki J.H., Prince M.R. 3D contrast-enhanced MR angiography. J. Magn. Reson. Imaging. 2007; 25 (1): 13-25. https://doi.org/10.1002/jmri.20767
80.Vrachliotis T.G., Bis K.G., Shetty A.N., Ravikrshan K.P. Contrast-enhanced three-dimensional MR angiography of the pulmonary vascular tree. Int. J. Cardiovasc. Imaging. 2002; 18: 283-293. https://doi.org/10.1023/a:1015541931895
81.Haage P., Piroth W., Krombach G., Karaagac S., Schaffer T., Gunther R.W., Bucker A. Pulmonary embolism: comparison of angiography with spiral computed tomography, magnetic resonance angiography, and realtime magnetic resonance imaging. Am. J. Respir. Crit. Care Med. 2003; 167: 729-734. https://doi.org/10.1164/rccm.200208-899oc
82.Oudkerk M, van Beek E.J., Wielopolski P., van Ooijen P. Comparison of contrast-enhanced magnetic resonance angiography and conventional pulmonary angiography for the diagnosis of pulmonary embolism: a prospective study. Lancet. 2002; 359: 1643-1647. https://doi.org/10.1016/s0140-6736(02)08596-3
83.Vrachliotis T.G., Bis K.G., Shetty A.N., Ravikrshan K.P. Contrast-enhanced three-dimensional MR angiography of the pulmonary vascular tree. Int. J. Cardiovasc. Imaging. 2002; 18: 283-293. https://doi.org/10.1023/a:1015541931895
84.Kirchhof K., Welzel T., Jansen O., Sartor K. More reliable noninvasive visualization of the cerebral veins and dural sinuses: comparison of three MR angiographic techniques. Radiology. 2002; 224 (3): 804-810. https://doi.org/10.1148/radiol.2243011019
85.Rollins N., Ison C., Reyes T., Chia J. Cerebral MR venography in children: comparison of 2D time-of-flight and gadolinium-enhanced 3D gradient-echo techniques. Radiology. 2005; 235 (2): 1011-1017. https://doi.org/10.1148/radiol.2353041427
86.Bosmans H., Marchal G., Lukito G., Yicheng N., Wilms G., Laub G., Baert A.L. Time-of-flight MR angiography of the brain: comparison of acquisition techniques in healthy volunteers. Am. J. Roentgenol. 1995; 164 (1): 161-167. https://doi.org/10.2214/ajr.164.1.7998531
87.Klingebiel R., Bauknecht H.C., Bohner G., Kirsch R., Berger J., Masuhr F. Comparative evaluation of 2D time-of-flight and 3D elliptic centric contrast-enhanced MR venography in patients with presumptive cerebral venous and sinus thrombosis. Eur. J. Neurol. 2007; 14 (2): 139-143. https://doi.org/10.1111/j.1468-1331.2006.01574.x
88.Blatter D.D., Parker D.L., Robison R.O. Cerebral MR angiography with multiple overlapping thin slab acquisition. Part I. Quantitative analysis of vessel visibility. Radiology. 1991; 179 (3): 805-811. https://doi.org/10.1148/radiology.179.3.2027996
89.Gupta A., Baradaran H., Kamel H., Mangla A., Pandya A., Fodera V., Dunning A., Sanelli P.C. Intraplaque highintensity signal on 3d time-of-flight mr angiography is strongly associated with symptomatic carotid artery stenosis. Am. J. Neuroradiol. 2014; 35 (3): 557-561. https://doi.org/10.3174/ajnr.a3732
90.Doepp F., Wurfel J.T., Pfueller C.F., Valdueza J.M., Petersen D., Paul F., Schreiber S.J. Venous drainage in multiple sclerosis: a combined MRI and ultrasound study. Neurology. 2011; 77 (19): 1745-1751. https://doi.org/10.1212/wnl.0b013e318236f0ea
91.Huang S.Y., Kim C.Y., Miller M.J., Gupta R T., Lessne M.L. Abdominopelvic and lower extremity deep venous thrombosis: Evaluation with contrast-enhanced MR Venography with a blood-pool agent. Am. J. Roentgenol. 2013; 201: 208-214. https://doi.org/10.2214/ajr.12.9611
92.Cantwell C.P., Cradock A., Bruzzi J., Cradock A., Bruzzi J., Fitzpatrick P. MR venography with true fast imaging with steady-state procession for suspected lower-limb deep vein thrombosis. J. Vasc. Interv. Radiol. 2006; 17: 1763-1769. https://doi.org/10.1097/01.rvi.0000242502.40626.53
93.Prince M.R., Grist T.M., Debatin J.F. 3D Contrast MR Angiography. 3rd ed. New York; Berlin; Heidelberg: Springer, 2003: 163-172. https://www.springer.com
94.Parmelee D.J., Walovitch R.C., Ouellet H.S., Lauffer R.B. Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Invest. Radiol. 1997; 32 (12): 741-747. https://doi.org/10.1097/00004424-199712000-00004
95.Lauffer R.B., Parmelee D.J., Dunham S.U., Ouellet H.S., Dolan R.P., Witte S., McMurry T.J., Walovitch R.C. MS-325: albumin-targeted contrast agent for MR angiography. Radiology. 1998; 207 (2): 529-538. https://doi.org/10.1148/radiology.207.2.9577506
96.Kramer L.A., Cohen A.M., Hasan K.M., Heimbigner J.H., Barreto A.D., Brod S.A. Contrast enhanced MR venography with gadofosveset trisodium: Evalution of the intracranial and extracranial venous system. J. Magn. Reson. 2014; 40 (3): 630-640. https://doi.org/10.002/jmri.24409]
97.Hadizadeh D.R., Kukuk G.M., Fahlenkamp U.L., Pressacco J., Schafer C., Rabe E., Koscielny A., Verrel F., Schild H.H., Willinek W.A. Simultaneous MR arteriography and venography with blood pool contrast agent detects deep venous thrombosis in suspected arterial disease. Am. J. Roentgenol. 2012; 198 (5): 1188-1195. https://doi.org/10.2214/ajr.11.7306
98.Duan X., Ling F., Shen Y., Yang J., Xu H.Y. Venous spasm during contrast-guided axillary vein puncture for pacemaker or defibrillator lead implantation. Europace. 2012; 14 (7): 1008-1011. https://doi.org/10.1093/europace/eus066
99.Barber C.J. Central venous catheter placement for intravenous digital subtraction angiography: an assessment of technical problems and success rate. Br. J. Radiol. 1989; 62: 599-602. https://doi.org/10.1259/0007-1285-62-739-599
100.Singh R.N., Salvoza M.I. Laminar flow due to venous valves masquerading as vein graft spasm. Cathet. Cardiovasc. Diagn. 1983; 9: 569-575. https://doi.org/10.1002/ccd.1810090606
101.Nikolaou K., Kramer H., Grosse C., Clevert D., Dietrich O., Hartmann M., Chamberlin P., Assmann S., Reiser M.F., Schoenberg S.O. High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology. 2006; 241: 861-872. https://doi.org/10.1148/radiol.2413060053
102.Lebowitz J.A., Rofsky N.M., Krinsky G.A., Weinreb J.C. Gadolinium-enhanced body MR venography with subtraction technique. Am. J. Roentgenol. 1997; 169 (3): 755-758. https://doi.org/10.2214/ajr.169.3.9275892
103.Weishaupt D., Hetzer F.H., Ruhm S.G., Patak M.A., Schmidt M., Debatin J.F. Three-dimensional contrast enhanced MRI using an intravascular contrast agent for detection of traumatic intra-abdominal hemorrhage and abdominal parenchymal injuries: an experimental study. Eur. Radiol. 2000; 10 (12): 1958-1564. https://doi.org/10.1007/s003300000519
104.Weishaupt D., Ruhm S.G., Binkert C.A., Schmidt M., Patak M.A., Steybe F., McGill S., Debatin J.F. Equilibriumphase MR angiography of the aortoiliac and renal arteries using a blood pool contrast agent. Am. J. Roentgenol. 2000; 175 (1): 189-195. https://doi.org/10.2214/ajr.175.1.1750189
105.Aschauer M., Deutschmann H.A., Stollberger R., Haus egger K.A., Obernosterer A., Schllnast H., Ebner F. Value of a blood pool contrast agent in MR venography of the lower extremities and pelvis: Preliminary results in 12 patients. Magn. Reson. Med. 2003; 50 (5): 993-1002. https://doi.org/10.1002/mrm.10607
106.Larsson E.M., Sunden P., Olsson C.G., Debatin J., Duerinckx A.J., Baum R. MR Venography an Intravascular Contrast Agent: Results from a Multicenter Phase 2 Study of Dosage. Am. J. Roentgenol. 2003; 180 (1): 227-232. http://doi.org/10.2214/air.180.1.1800227
107.Spinowitz B.S., Kausz A.T., Baptista J., Noble S.D., Sothinathan R., Bernardo M.V., Brenner L., Pereira B.J. Ferumoxytol for treating iron deficiency anemia in CKD. J. Am. Soc. Nephrol. 2008; 19: 1599-1605. https://doi.org/10.1681/asn.2007101156
108.Li W., Salanitri J., Tutton S., Dunkle E.E., Schnieder J.R. Lower extremity deep venous thrombosis: Evaluation with Ferumoxytol-enhanced MR Imaging and dual-contrast mechanism-ereliminary experience. Radiology. 2007; 242: 873-881. https://doi.org/10.1148/radiol.2423052101.
109.Hamilton B.E., Nesbit G.M., Dosa E., Gahramanov S., Rooney B., Nesbit E.G., Raines J., Neuwelt E.A. Comparative analysis of ferumoxytol and gadoteridol enhancement using T1- and T2-weighted MRI in neuroimaging. Am. J. Roentgenol. 2011; 197 (4): 981-988. https://doi.org/10.2214/ajr.10.5992
110.Singh A., Patel T., Hertel J., Bernardo M., Kausz A., Brenner L. Safety of Ferumoxytol in Patients With Anemia and CKD. Am. J. Kidney Dis. 2008; 52 (5): 907-905. https://doi.org/10.1053/j.ajkd.2008.08.001
111.Bashir M.R., Jaffe T.A., Brennan T.V., Patel U.D., Ellis M.J. Renal transplant imaging using magnetic resonance angiography with a nonnephrotoxic contrast agent. Transplan tation. 2013; 96: 91-96. https://doi.org/10.1097/tp.0b013e318295464c
112.Shinde T.S., Lee V.S., Rofsky N.M. Three-dimensional gadolinium-enhanced MR venographic evaluation of patency of central veins in the thorax: initial experience.mJ. Radiol. 1999; 213: 555-560. https://doi.org/10.1148/radiology.213.2.r99nv27555
113.Lebowitz J.A., Rofsky N.M., Krinsky G.A., Weinreb J.C. Gadolinium-enhanced body MR venography with subtraction technique. Am. J. Roentgenol. 1997; 169: 755-758. https://doi.org/10.2214/ajr.169.3.9275892
114.Fraser D.G., Moody A.R., Davidson I.R., Martel A.L., Morgan P.S. Deep venous thrombosis: Diagnosis by using venous enhanced subtracted peak arterial MR Venography versus conventional venography. Radiology. 2003; 226: 812-820. https://doi.org/10.1148/radiol.2263012205
115.Du J., Thornton F., Mistretta C., Grist T.M. Dynamic MR venography: An intrinsic benefit of time-resolved MR angiography. J. Magn. Reson. Imaging. 2006; 24 (2): 922-927. https://doi.org/10.1002/jmri.20716
116.Ruehm S.G., Wiesner W., Debatin J.F. Pelvic and Lower Extremity Veins: Contrast-enhanced Three-dimensional MR Venography with a Dedicated Vascular Coil-Initial Experiencel. J. Radiol. 2000; 215 (2): 421-427. https://doi.org/10.1148/radiology. 215.2.r00ap27421
117.Ruehm S.G., Wiesner W., Debatin J.F. Direct contrastenhanced 3D MR venjgraphy. J. Eur. Radiol. 2001; 11 (1): 102-112. https://doi.org/10.1007/s003300000586
118.Ruehm S.G. MR Venography. Chapter in Book: Magnetic Resonance Angiography. Springer, 2005: 3-22. ISBN 88-470-0266-4. https://www.springer.com
119.Gurel S., Karavas E., Buharalioglu Y., Daglar B. [Gurel K., Gurel S., Karavas E., Buharalioglu Y., Daglar B. Direct contrast-enhanced MR venography in the diagnosis of May-Thurner Syndrome. Eur. J. Radiol. 2011; 80 (2): 533-536. https://doi.org/10.1016/j.ejrad.2010.04.033A].
120.Yin-Chen H., Yao-Kuang H., Li-Sheng H., Pang-Yen C., Chen-Wei C. Using non-contrast-enhanced magnetic resonance venography for the evaluation of May-Thurnersyndrome in patients with renal insufficiency. Medicine. 2019; 98 (52): 18427.https://doi.org/10.1097/MD.0000000000018427.
121.Girardi M., Kay J., Elston D.M., Leboit P.E., Abu-Alfa A., Cowper S.E. Nephrogenic systemic fibrosis: clinicopathological definition and workup recommendations. J. Am. Acad. Dermatol. 2011; 65 (6): 1095-1106.e7. https://doi.org/10.1016/j.jaad.2010.08.041
122.Ramalho J, Castillo M, AlObaidy M, Nunes RH, Ramalho M, Dale BM et al. High signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR images: evaluation of two linear gadolinium-based contrast agents. Radiology. 2015; 276: 836-844. https://doi.org/10.1016/j.jaad.2010.08.041
123.Bae S., Lee H.J., Han K., Park Y.W., Choi Y.S., Ahn S.S., Kim J., Lee S.K. Gadolinium deposition in the brain: association with various GBCAs using a generalized additive model. Eur. Radiol. 2017; 27 (8): 3353-3361. https://doi.org/10.1007/s00330-016-4724-5
124.Abu-Alfa A.K. Nephrogenic Systemic Fibrosis and Gadalinium Based Contrast Agents. Adv. Chronic Kidney Dis. 2011; 18 (3): 188-198. https://doi.org/10.1053/j.ackd.2011.03.001
125.Bjarnason H. Direct contrast venography. Book Chapter in Handbook of Venous and Lymphatic Disorders. 4th ed. Guidelines of the American Venous Forum by ed: Glovezki P. 2017: 169-176. https://doi.org/10.1201/9781315382449-15
126.Stein P.D. Ascending CT-Venography and Venous Phase CT-Venography for Diagnosis of Deep Venous Thrombosis. Book Chapter in Pulmonary Embolism 3th ed. Wiley, 2016: 250-254. ISBN 9781119039082. https://doi.org/10.1002/9781119039112.ch51
In this literature review, the analysis of the studies of venous blood flow pathology in the inferior Vena cava system using magnetic resonance imaging (MRI) is carried out. Special attention is paid to the attempts made to use this method in the diagnosis of chronic lower limb vein disorders (CVD) through magnetic resonance venography (MRV). Historically and methodically, the gradual introduction of MRV methods in the diagnosis of lower limb vein thrombosis (LEDVT) and venous thromboembolism (VTE) has been shown. Methods of non-contrast MRV based on the effect of blood flow, as in the case of MR-Angiography, are divided into two principal groups: methods based on the amplitude effects of Time-of-Flight (TOF) and methods based on Phase Contrast effects (PC). Techniques for conducting contrast-free MRV are described in detail. Attention is paid to pulse sequences used in the world for visualization of veins in contrast-free MRV in TOF and PC mode (FR-FBI, SPADE, SSFP) and post-processing methods: 2D-TOF MRV FLASH, 2D-TOF MRV CRASS, FIPS, VED, VENS. Contrast-enhanced MRV (CE MRV) is based on the use of “blood pool” contrast agents, which feature the ability to form stable compounds with blood plasma proteins. Worldwidesubstances with magnetic and supermagnetic properties based on gadolinium or iron oxide are used as contrast agents for CE MRV. The result of using these contrast agents is an increase in the quality of visualization due to a better signal to noise ratio (SNR) using 3D image processing (3D CE MRV) using fast sequences: GRE, TFLAS, VESPA, CAT, in conditions of direct and indirect CE MRV. It is noted that in recent years, certain restrictions have been imposed on certain linear contrast agents containing gadolinium in their further use. Therefore, for the purpose of CE MRV, it is efficientl to use only cyclic contrast agents to avoid unnecessary risks. Contrast-free MRV has again received intensive development in recent years, due to the restrictions imposed, one of these methods is direct thrombus imaging (Direct Thrombus Imaging - DTI or Magnetic Resonance Direct Thrombus Imaging - MRDTI) using fast pulse sequences: bSSFP, BBTI, DANTE. The latest research on this LEDVT diagnostic method was published in 2019 and has shown high diagnostic value. For all the most commonly used methods of MRV, specificity and sensitivity are shown. Further MRV in patients with CVD and DVT is a promising diagnostic task in modern phlebology. MRV should be introduced into clinical practice more actively than it is today.
Keywords:
магнитно-резонансная томография, магнитно-резонансная флебография, компьютерная томография, компьютерно-томографическая флебография, хронические заболевания вен, диагностика тромбоза вен нижних конечностей, варикозное расширение вен, анатомическое строение вен нижних конечностей, magnetic resonance imaging, magnetic resonance venography, computed tomography, computed tomography venography, chronic