Выход
Вход/Login
 
E-mail
Пароль/Password
Забыли пароль?
Введите E-mail и жмите тут. Пароль будет выслан на указанный адрес
Войти (LogIn)

 

Если вы первый раз здесь, то зарегистрируйтесь

Регистрация/Sign Up
Полное имя (Ф И О)/Full name
E-mail
Повторите E-mail
Телефон/Phone
Зарегистрироваться,
на ваш E-mail будет выслан временный пароль

Нажимая кнопку Зарегистрироваться, вы соглашаетесь с Правилами сайта и Политикой Конфиденциальности http://vidar.ru/rules.asp

 

Медицинская литература. Новинки


 

 

 

 

 

 
вce журналы << Медицинская визуализация << 2024 год << №3 <<
стр.12
отметить
статью

Оценка диагностической ценности глубокого машинного обучения для автоматизированной сегментации паренхимы поджелудочной железы и ее гипо- и гиперваскулярных образований по КТ-изображениям с помощью U-net нейросети

Замятина К. А., Жарикова А. В., Кондратьев Е. В., Усталов А. А., Староверов Н. Е., Нефедьев Н. А., Гожева А. Р., Шмелева С. А., Кармазановский Г. Г.
Вы можете загрузить полный текст статьи в формате pdf
Замятина К. А. - ФГБУ “Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского” Минздрава России; Филиал “Онкологический центр №1” ГБУЗ города Москвы “Городская клиническая больница имени С.С. Юдина ДЗ города Москвы”, catos.zama@gmail.com,
Жарикова А. В. - ФГБУ “Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского” Минздрава России, zha-vit@yandex.ru,
Кондратьев Е. В. - ФГБУ “Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского” Минздрава России, evgenykondratiev@gmail.com,
Усталов А. А. - ФГБУ “Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского” Минздрава России, andreiustalov@gmail.com,
Староверов Н. Е. - ФГАОУ ВО “Санкт-Петербургский государственный электротехнический университет “ЛЭТИ” им. В.И. Ульянова (Ленина)”, nik0205st@mail.ru,
Нефедьев Н. А. - ФГБУ высшего образования и науки “Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алферова Российской академии наук”, Nikolay-Nefedev@yandex.ru,
Гожева А. Р. - ФГБОУ ВО “Санкт-Петербургский государственный педиатрический медицинский университет” Минздрава России, gozhevaaa@mail.ru,
Шмелева С. А. - ФГБУ “Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского” Минздрава России, sofiyaontonovna@gmail.com,
Кармазановский Г. Г. - ФГБУ “Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского” Минздрава России; ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России, karmazanovsky@ixv.ru,

Цель исследования: создание и оценка эффективности технологии сегментации паренхимы поджелудочной железы (ПЖ), а также сегментации и детекции ее гипер- и гиповаскулярных образований на компьютерных томограммах органов брюшной полости с использованием глубокого машинного обучения.Материал и методы. Для обучения алгоритмов были использованы КТ-исследования из базы данных НМИЦ хирургии им. А.В. Вишневского – общий объем около 150 исследований (артериальная и портальная фазы исследования). Для валидации полученных алгоритмов был подготовлен тестовый набор данных из 46 анонимизированных КТ-исследований (артериальная и портальная фазы исследования), независимо оцененных врачами-экспертами. В качестве основной сегментационной нейросети (ИНС) используется nn-UNet (M. Antonelli и соавт., 2022)..Результаты. Средняя точность тестового набора данных для модели, определяющей сегментационные маски ПЖ на КТ-изображениях, AUC составила – 0,8 для портальной фазы и – 0,85 для артериальной фазы, сегментационные маски образований поджелудочной железы – 0,6.Заключение. Автоматизированная сегментация структуры паренхимы ПЖ с использованием технологий глубокого машинного обучения показала высокую точность. Сегментация гипо- и гиперваскулярных образований ПЖ требует совершенствования. Совпадение масок показало достаточно низкий результат, однако во всех случаях место расположения патологического образования было отмечено алгоритмом правильно. Совершенствование обучающего дата-сета и используемого алгоритма может увеличить точность алгоритма. При детекции образований ПЖ ложноотрицательных результатов получено не было, во всех случаях ИНС детектировала “подозрительные” области паренхимы ПЖ. Это может помочь снизить пропуски патологий ПЖ по компьютерным томограммам, а дальнейшую их оценку может осуществлять сам врач-рентгенолог.

Ключевые слова:
КТ, поджелудочная железа, образования поджелудочной железы, машинное обучение, искусственные нейронные сети, сегментация, трансферное обучение, CT, pancreas, pancreatic lesions, machine learning, deep convolutional neural networks, segmentation, transfer learning

Литература:
1.Isensee F., Petersen J., Klein A. et al. nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation. arXiv; 2018; 2. https://arxiv.org/abs/1809.10486 .https://doi.org/10.48550/arXiv.1809.10486
2.Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv; 2015; 2. https://arxiv.org/abs/1505.04597. https://doi.org/10.48550/arXiv.1505.04597
3.Kenner B., Chari S.T., Kelsen D. et al. Artificial Intelligence and Early Detection of Pancreatic Cancer: 2020 Summative Review. Pancreas. 2021; 50 (3): 251–279. https://doi.org/10.1097/MPA.0000000000001762
4.Mello-Thoms C., Mello C.A.B. Clinical applications of artificial intelligence in radiology. Br. J. Radiol. 2023; 96 (1150): 20221031. https://doi.org/10.1259/bjr.20221031
5.Anghel C., Grasu M.C., Anghel D.A. et al. Pancreatic Adenocarcinoma: Imaging Modalities and the Role of Artificial Intelligence in Analyzing CT and MRI Images. Diagnostics (Basel). 2024; 14 (4): 438. https://doi:10.3390/diagnostics14040438
6.Chu L.C., Park S., Kawamoto S. et al. Application of Deep Learning to Pancreatic Cancer Detection: Lessons Learned From Our Initial Experience. J. Am. Coll. Radiol. 2019; 16 (9 Pt B): 1338–1342. https://doi:10.1016/j.jacr.2019.05.034
7.Zou K.H., Warfield S.K., Bharatha A. et al. Statistical validation of image segmentation quality based on a spatial overlap index. Academic radiology. 2004; 11 (2): 178–189. https://doi.org/10.1016/s1076-6332(03)00671-8
8.Ni H., Zhou G., Chen X. et al. Predicting Recurrence in Pancreatic Ductal Adenocarcinoma after Radical Surgery Using an AX-Unet Pancreas Segmentation Model and Dynamic Nomogram. Bioengineering (Basel). 2023; 10 (7): 828. https://doi:10.3390/bioengineering10070828
9.Mahmoudi T., Kouzahkanan Z.M., Radmard A.R. et al. Segmentation of pancreatic ductal adenocarcinoma (PDAC) and surrounding vessels in CT images using deep convolutional neural networks and texture descriptors. Sci. Rep. 2022; 12 (1): 3092. https://doi:10.1038/s41598-022-07111-9
10.Antonelli M., Reinke A., Bakas S. et al. The Medical Segmentation Decathlon. Nat. Commun. 2022; 13 (1): 4128. https://doi.org/10.1038/s41467-022-30695-9
11.Li J., Qi L., Chen Q. et al. A dual meta-learning framework based on idle data for enhancing segmentation of pancreatic cancer. Medical Image Analysis. 2022; 78: 102342. https://doi.org/10.1016/j.media.2021.102342
12.Miao Q., Wang X., Cui J. et al. Artificial intelligence to predict T4 stage of pancreatic ductal adenocarcinoma using CT imaging. Comput. Biol. Med. 2024; 171: 108125. https://doi:10.1016/j.compbiomed.2024.108125
13.Tikhonova V.S., Karmazanovsky G.G., Kondratyev E.V. et al. Radiomics model-based algorithm for preoperative prediction of pancreatic ductal adenocarcinoma grade. Eur. Radiol. 2023; 33 (2): 1152–1161. https://doi:10.1007/s00330-022-09046-1
14.Alves N., Schuurmans M., Litjens G. et al. Fully Automatic Deep Learning Framework for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography. Cancers (Basel). 2022; 14 (2): 376. https://doi:10.3390/cancers14020376
15.Fedorov A., Beichel R., Kalpathy-Cramer J. et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging. 2012; 30 (9): 1323–1341. https://doi.org/10.1016/j.mri.2012.05.001
16.Ronneberger O., Fischer P., Brox T. U-Net: Convolutional networksfor biomedical image segmentation, in Medical Image Computing and Computer-Assisted Intervention. MICCAI; 2015, Springer, 9351 (2015): 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
17.Wasserthal J., Breit H.C., Meyer M.T. et al. TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images. Radiol. Artif. Intell. 2023; 5 (5): e230024. https://doi.org/10.1148/ryai.230024
18.Roth H., Farag A., Turkbey E.B. et al.. Data From Pancreas-CT (Version 2). The Cancer Imaging Archive. 2016. https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
19.Cai Y., Long Y., Han Z. et al. Swin Unet3D: a three-dimensional medical image segmentation network combining vision transformer and convolution. BMC Med. Inform. Deci.s Mak. 2023; 23 (1): 33. https://doi.org/10.1186/s12911-023-02129-z

Deep Machine Learning for Automatic Segmentation of the Pancreatic Parenchyma and its hypo- and hypervascular lesions on CT Images

Zamyatina K. A., Zharikova A. V., Kondratyev E. V., Ustalov A. A., Staroverov N. E., Nefedev N. A., Gozheva A. R., Shmeleva S. A., Karmazanovsky G. G.

Objective of the study. To develop and evaluate the effectiveness of a technology for  segmenting the pancreatic parenchyma and its hyper- and hypovascular lesions on abdominal computed tomography (CT) scans using deep machine learning.Materials and methods. CT scans from the database of the A.V. Vishnevsky National Medical Research Center of Surgery were used for training and testing the algorithms – a total number of approximately 150 studies (arterial and venous phases). A test dataset of 46 anonymized CT scans (arterial and venous phases) was prepared for validation of the obtained algorithms, independently assessed by expert physicians. The primary segmentation neural network used is nn-UNet (M. Antonelli et al., 2022).Results. The average accuracy of the test dataset for the model determining segmentation masks of the pancreas on CT images had an AUC of 0.8 for the venous phase and 0.85 for the arterial phase. The segmentation masks of pancreatic formations had an AUC of 0.6.Conclusion. Automated segmentation of the pancreatic parenchyma structure using deep machine learning technologies demonstrated high accuracy. However, the segmentation of hypo- and hypervascular pancreatic lesions requires improvement. The overlap of the masks showed a rather low result, but in all cases, the location of the pathological formation was correctly identified by the algorithm. Enhancing the training dataset and the algorithm used could increase the accuracy of the algorithm.No false negative results were obtained when detecting pancreatic formations; in all cases, the INS detected “suspicious” areas of the pancreatic parenchyma. This can help reduce the omission of pancreatic pathologies in CT scans, and their further assessment can be carried out by the radiologist himself.

Keywords:
КТ, поджелудочная железа, образования поджелудочной железы, машинное обучение, искусственные нейронные сети, сегментация, трансферное обучение, CT, pancreas, pancreatic lesions, machine learning, deep convolutional neural networks, segmentation, transfer learning

Новости   Магазин   Журналы   Контакты   Правила   Доставка   О компании  
ООО Издательский дом ВИДАР-М, 2024