Новости | Магазин | Журналы | Контакты | Правила | Доставка | |
Вход Регистрация |
Изображения, контрастность которых определяется магнитной восприимчивостью тканей, являются источником дополнительной полезной диагностической информации. Такую информацию получают с помощью появившихся в последнее время импульсных последовательностей (ИП) высокого разрешения SWI (Susceptibility Weighted Imaging) и SWAN (Т2Star Weighted Angiography), в основе которых лежит ИП градиентное эхо (Т2*GRE). В этой работе рассмотрены физические величины, характеризующие магнитные свойства ткани, а именно, магнитная восприимчивость, магнитная проницаемость и импульсные последовательности SWAN и SWI, а также применение ИП SWAN в нейрохирургической клинике.
Ключевые слова:
Магнитно-резонансная томография (МРТ), магнитные свойства тканей, магнитная восприимчивость, импульсные последовательности SWI, SWAN, нейрохирургия
Литература:
1. Корниенко В.Н., Пронин И.Н. Диагностическая нейрорадиология. М.: ИП “Андреева Т.М.”, 2006.
2. Коновалов А.Н., Корниенко В.Н., Пронин И.Н. Магнитно-резонансная томография в нейрохирургии. М.: Видар, 1997.
3. Сороко Л.М. Интроскопия на основе ядерного магнитного резонанса. М.: Энергоатомиздат, 1986.
4. Schenck J. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the
first and second kinds. Med. Phys. 1996; 23: 815–830.
5. Haacke E.M., Mittal S., Wu Z. et al. Susceptibility Weighted Imaging: Technical Aspects and Clinical
Applications, Part 1. Am. J. Neuroradiol. 2009; 30: 19–30.
6. Lee B., Vo K., Lim T. NMR Venography using susceptibility
effect produced by deoxyhemoglobin. Magn. Reson.
Med. 1992; 28: 25–38.
7. Reichenbach J. High resolution blood oxygenation level
dependent MR venography (HRVG): a new technique.
Neuroradiology 2001; 43: 364–369.
8. Reichenbach J., Venkatesan R. Schillinger D. et al. Small
vessels in the human brain: MR venography with deoxygemoglobin as an intrinsic contrast agent. Radiology 1997;
204: 272–277.
9. Haacke E.M., Xu Y., Cheng Y. et al. Susceptibility Weighted
Imaging (SWI). Magn. Reson. Imaging 2004; 52: 612–618.
10. Schenck J. Pathophysiology of Brain Iron. International
Society for Magnetic Resonance in Medicine, 2010,
СDROM.
11. Haacke E.M., Ayaz M., Khan A. et al. Establishing a baseline phase behavior in magnetic resonance imaging to
determine normal vs. abnormal iron content in the brain.
Magn. Reson. Imaging 2007; 26: 256–264.
12. Frahm J., Haase A., Matthaei D. Rapid Three dimensional
NMR imaging using the FLASH technique. J. Comp.
Tomogr. 1986; 10: 363–368.
13. Scheid R., Preul C., Gruber O. et al. Diffuse axonal injury
associated with chronic traumatic brain injury: evidence
from T2*weighted gradientecho imaging at 3T. Am. J.
Neuroradiol. 2003; 24: 1049–1056.
14. Tong K., Ashwal S., Holshouser B. et al. Hemorrhagic
shearing lesions in children and adolescents with post-traumatic diffuse axonal injury: improved detection and
initial results. Radiology 2003; 227: 332–339.
15. Kidwell C., Saver J., Vilablanca J. et al. Magnetic resonance imaging detection of microbleeds before thrombolysis: an emerging application. Stroke 2002; 33: 95–98.
16. Greenberg S., O’Donnel H., Schaefer P.W. et al. MRI
detection of new hemorrhages: potential marker og progression in cerebral amyloid angiopathy. Neurology 1999;
53: 1135–1138.
17. Lesnik Oberrstein S., van Den Boom R., van Buchem M.
et al. Cerebral microbleeds in CADASIL. Neurology 2003;
57: 1066–1070.
18. Campi A., Benndorf G., Filippi P. et al. Primary angiitis of
the central nervous system: serial MRI of brain and spinal
cord. Neuroradiology 2001; 43: 599–607.
19. Essig M., Reichenbach J., Shad I. et al. High resolution
MR venography of cerebral arteriovenous malformations.
Magn. Reson. Imaging 2001; 17: 1417–1425.
20. Krishnamoorthy T., Radhakrishnan V., Thomas B. et al.
Microhemorrhages in vestibular schwannomas: prospective study with T2* weighted gradientecho sequence. Proc.
Am. Soc. Neuroradiol. (San Diego, USA) 2006.
21. Tan I., van Schijndel R., Pouwels P. et al. MR-venography
of multiple sclerosis. Am. J. Neuroradiol. 2000; 21:
1039–1042.
22. Mittal S., Wu Z., Haacke E. et al. Susceptibility-Weighted
Imaging: Technical Aspects and Clinical Applications, Part
2. Am. J. Neuroradiol. 2009; 30: 332–352.
23. Wycliffe N., Choe J.Holshouer B. et al. Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted
imaging technique compared to computed tomography:
a retrospective study. J. Magn. Reson. Imaging 2004; 20:
372–377.
24. Rauscher A., Sedlacik J., Barth M. et al. Magnetic susceptibilityweighted MR phase imaging of the human
brain. Am. J. Neuroradiol. 2005; 26: 736–742.
25. Tong K., Ashwal S., Obenaus A. et al. Susceptibilityweighted MR imaging: a review of clinical application in
children. Am. J. Neuroradiol. 2008; 29: 9–17.
Tissue contrast based on magnetic susceptibility allows to get additional useful diagnostic information. New neuroimaging technology named susceptibility weighted imaging (SWI) and Т2-Star Weighted Angiography (SWAN) are the high resolution pulse sequences based on T2* Gradient Echo method. In this paper we review the physical principles, characterizing the magnetic properties of tissues, such as magnetic susceptibility and magnetic permeability, pulse sequences SWI and SWAN and application of SWAN in neurosurgical clinics.
Keywords:
Magnetic resonance imaging (MRI), tissue magnetic properties, magnetic susceptibility, magnetic permeability, pulse sequence, SWI, SWAN, neurosurgery.