Выход
Вход/Login
 
E-mail
Пароль/Password
Забыли пароль?
Введите E-mail и жмите тут. Пароль будет выслан на указанный адрес
Войти (LogIn)

 

Если вы первый раз здесь, то зарегистрируйтесь

Регистрация/Sign Up
Полное имя (Ф И О)/Full name
E-mail
Повторите E-mail
Телефон/Phone
Зарегистрироваться,
на ваш E-mail будет выслан временный пароль

Нажимая кнопку Зарегистрироваться, вы соглашаетесь с Правилами сайта и Политикой Конфиденциальности http://vidar.ru/rules.asp

 

Медицинская литература. Новинки


 

 

 

 

 

 
вce журналы << Медицинская визуализация << 2023 год << №2 <<
стр.23
отметить
статью

Магнитно-резонансная томография в оценке цереброваскулярной реактивности

Никогосова А. К., Лелюк С. Э., Лелюк В. Г.
Вы можете загрузить полный текст статьи в формате pdf
Никогосова А. К. - ФГБУ “Федеральный центр мозга и нейротехнологий” ФМБА России, gazanchyan.anait@gmail.com,
Лелюк С. Э. - ФГБОУ ДПО “Российская медицинская академия непрерывного профессионального образования” Минздрава России,
Лелюк В. Г. - ФГБУ “Федеральный центр мозга и нейротехнологий” ФМБА России,

Цель исследования: анализ литературы, касающейся методики проведения МРТ-картирования цереброваскулярной реактивности.Материал и методы. Проанализировано 75 публикаций (4 отечественные, 71 зарубежная), вышедших в свет в период с 1960 по 2021 г. Более половины работ было опубликовано в последнее десятилетие, 26 работ — в период с 2016 по 2021 г.Результаты. В статье систематизированы способы оценки цереброваскулярной реактивности и подходы к оценке цереброваскулярной реактивности методом МРТ. Подробно изложена методика проведения бесконтрастного МРТ-картирования цереброваскулярной реактивности с гиперкапнической пробой; также рассмотрены альтернативные вазоактивные стимулы. Обсуждены вопросы, связанные с обработкой данных и оценкой результатов исследования.Заключение. Нарушения цереброваскулярной реактивности играют важную роль в патогенезе сосудистых заболеваний головного мозга. На протяжении последних десятилетий для оценки цереброваскулярной реактивности широко использовались различные радионуклидные и ультразвуковые методы. В последние годы значительно возрос интерес исследователей к МРТ как методу картирования цереброваскулярной реактивности. Неинвазивность, безопасность, отсутствие лучевой нагрузки и хорошая переносимость являются безусловными преимуществами МРТ-картирования перед другими способами оценки цереброваскулярной реактивности. Однако разнообразие методологических подходов к МРТ-картированию цереброваскулярной реактивности обусловливает значительную вариабельность результатов исследования. Стандартизация процедуры должна являться первым шагом на пути внедрения МРТ-картирования цереброваскулярной реактивности в клиническую практику.

Ключевые слова:
цереброваскулярная реактивность, цереброваскулярный резерв, МРТ, cerebrovascular reactivity, cerebrovascular reserve, MRI

Литература:
1.Лелюк В.Г., Лелюк С.Э. Церебральное кровообращение и артериальное давление. М.: Реальное время, 2004. 304 с.
2.Лелюк В.Г., Лелюк С.Э. Ультразвуковая ангиология. 3-е изд., доп. и перераб. М.: Реальное время, 2007. 416 с.
3.Лелюк В.Г., Лелюк С.Э. Цереброваскулярный резерв при атеросклеротическом поражении брахиоцефальных артерий. Этюды современной ультразвуковой диагностики. Киев: Укрмед, 2001. 180 c.
4.Silvestrini M., Vernieri F., Pasqualetti P. et al. Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA. 2000; 283 (16): 2122–2127. https://doi.org/10.1001/jama.283.16.2122
5.Ogasawara K., Ogawa A., Yoshimoto T. Cerebrovascular reactivity to acetazolamide and outcome in patients with symptomatic internal carotid or middle cerebral artery occlusion: a xenon-133 single-photon emission computed tomography study. Stroke. 2002; 33 (7): 1857–1862. https://doi.org/10.1161/01.str.0000019511.81583.a8
6.Yonas H., Smith H.A., Durham S.R. et al. Increased stroke risk predicted by compromised cerebral blood flow reactivity. J. Neurosurg. 1993; 79 (4): 483–489. https://doi.org/10.3171/jns.1993.79.4.0483
7.Abdulrauf S.I. Cerebral Revascularization: Techniques in Extracranial-to-Intracranial Bypass Surgery. Elsevier Health Sciences, 2010. 1194 p.
8.Vagal A.S., Leach J.L., Fernandez-Ulloa M., Zuccarello M. The Acetazolamide Challenge: Techniques and Applications in the Evaluation of Chronic Cerebral Ischemia. Am. J. Neuroradiol. 2009; 30 (5): 876–884. https://doi.org/10.3174/ajnr.A1538
9.Paulson O.B., Strandgaard S., Edvinsson L. Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 1990; 2 (2): 161–192.
10.Рипп Т.М., Мордовин В.Ф., Рипп Е.Г., Реброва Н.В., Семке Г.В., Пекарский С.Е., Фальковская А.Ю., Ситкова Е.С., Личикаки В.А., Зюбанова И.В. Комплексная оценка параметров цереброваскулярной реактивности. Сибирский журнал клинической и экспериментальной медицины. 2016; 31 (1): 12–17. https://doi.org/10.29001/2073-8552-2016-31-1-12-17
11.McDonnell M.N., Berry N.M., Cutting M.A. et al. Transcranial Doppler ultrasound to assess cerebrovascular reactivity: reliability, reproducibility and effect of posture. Peer J. 2013; 1: e65. https://doi.org/10.7717/peerj.65
12.Fisher J.A., Mikulis D.J. Cerebrovascular Reactivity: Purpose, Optimizing Methods, and Limitations to Interpretation – A Personal 20-Year Odyssey of (Re) searching. Frontiers Physiol. 2021; 12: 629651. https://doi.org/10.3389/fphys.2021.629651
13.Burley C.V., Francis S.T., Thomas K.N. et al. Contrasting Measures of Cerebrovascular Reactivity Between MRI and Doppler: A Cross-Sectional Study of Younger and Older Healthy Individuals. Frontiers Physiol. 2021; 12. https://doi.org/10.3389/fphys.2021.656746
14.Powers W.J., Press G.A., Grubb R.L. et al. The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Ann. Intern. Med. 1987; 106 (1): 27–34. https://doi.org/10.7326/0003-4819-106-1-27
15.Powers W.J. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann. Neurol. 1991; 29(3): 231–240. https://doi.org/10.1002/ana.410290302
16.Dirnagl U., Pulsinelli W. Autoregulation of cerebral blood flow in experimental focal brain ischemia. J. Cereb. Blood Flow Metab. 1990; 10 (3): 327–336. https://doi.org/10.1038/jcbfm.1990.61
17.Zaharchuk G., Mandeville J.B., Bogdanov A.A. et al. Cerebrovascular dynamics of autoregulation and hypoperfusion. An MRI study of CBF and changes in total and microvascular cerebral blood volume during hemorrhagic hypotension. Stroke. 1999; 30 (10): 2197–2204. https://doi.org/10.1161/01.str.30.10.2197
18.Schumann P., Touzani O., Young A.R. et al. Evaluation of the ratio of cerebral blood flow to cerebral blood volume as an index of local cerebral perfusion pressure. Brain: J. Neurol. 1998; 121 (7): 1369–1379. https://doi.org/10.1093/brain/121.7.1369
19.Derdeyn C.P., Videen T.O., Yundt K.D. et al. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain. 2002; 125 (3): 595–607. https://doi.org/10.1093/brain/awf047
20.Kataoka H., Miyamoto S., Ogasawara K. et al. Results of Prospective Cohort Study on Symptomatic Cerebrovascular Occlusive Disease Showing Mild Hemodynamic Compromise. Neurol. Med.Chir. 2015; 55 (6): 460–468. https://doi.org/10.2176/nmc.oa.2014-0424
21.Buxton R.B. Introduction to Functional Magnetic Resonance Imaging. 2nd ed. Cambridge university press, 2009. 470 p.
22.Asghar M.S., Hansen A.E., Pedersen S. et al. Pharmacological modulation of the BOLD response: a study of acetazolamide and glyceryl trinitrate in humans. J. Mag. Res. Imaging. 2011; 34 (4): 921–927. https://doi.org/10.1002/jmri.22659
23.Fierstra J., Sobczyk O., Battisti-Charbonney A. et al. Measuring cerebrovascular reactivity: what stimulus to use? J. Physiol. 2013; 591 (23): 5809–5821. https://doi.org/10.1113/jphysiol.2013.259150
24.Thie A., Carvajal-Lizano M., Schlichting U. et al. Multimodal tests of cerebrovascular reactivity in migraine: a transcranial Doppler study. J. Neurol. 1992; 239 (6): 338–342. https://doi.org/10.1007/bf00867591
25.Yoon S., Zuccarello M., Rapoport R.M. pCO 2 and pH regulation of cerebral blood flow. Front. Physiol. 2012; 3: 365. https://doi.org/10.3389/fphys.2012.00365
26.Battisti-Charbonney A., Fisher J., Duffin J. The cerebrovascular response to carbon dioxide in humans. J. Physiol. 2011; 589 (12): 3039–3048. https://doi.org/10.1113/jphysiol.2011.206052
27.Mandell D., Han J.S., Poublanc J. et al. Mapping Cerebrovascular Reactivity Using Blood Oxygen Level-Dependent MRI in Patients With Arterial Steno-occlusive Disease Comparison With Arterial Spin Labeling MRI. Stroke; J. Cerebral. Cir. 2008; 39: 2021–2028. https://doi.org/10.1161/STROKEAHA.107.506709
28.Ferre J.C., Bannier E., Raoult H. et al. Arterial spin labeling (ASL) perfusion: Techniques and clinical use. Diagn. and Intervent. Imaging. 2013; 94 (12): 1211–1223. https://doi.org/10.1016/j.diii.2013.06.010
29.Liu P., De Vis J.B., Lu H. Cerebrovascular reactivity (CVR) MRI with CO2 challenge: A technical review. NeuroImage. 2019; 187: 104–115. https://doi.org/10.1016/j.neuroimage.2018.03.047
30.Choi H.J., Sohn C.H., You S.H. et al. Can Arterial SpinLabeling with Multiple Postlabeling Delays Predict Cerebrovascular Reserve? Am. J. Neuroradiol. 2018; 39 (1): 84–90. https://doi.org/10.3174/ajnr.A5439
31.Su P., Mao D., Liu P. et al. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL. Mag. Reson. Med. 2017; 78 (5): 1812–1823. https://doi.org/10.1002/mrm.26587
32.Donahue M.J., Faraco C.C., Strother M.K. et al. Bolus arrival time and cerebral blood flow responses to hypercarbia. J. Cereb. Blood Flow Metab. 2014; 34 (7): 1243–1252. https://doi.org/10.1038/jcbfm.2014.81
33.Ferreira H., Ramalho J. Basic Principles of Phase Contrast Magnetic Resonance Angiography (PC MRA) and MRV. In: Vascular Imaging of the Central Nervous System: Physical Principles, Clinical Applications, and Emerging Techniques, 1st ed. Somerset, USA: John Wiley & Sons, 2013: 137–144. https://doi.org/10.1002/9781118434550.ch8
34.Taneja K., Liu P., Xu C. et al. Quantitative Cerebrovascular Reactivity in Normal Aging: Comparison Between Phase-Contrast and Arterial Spin Labeling MRI. Front. Neurol. 2020; 11: 758. https://doi.org/10.3389/fneur.2020.00758
35.Leung J., Behpour A., Sokol N. et al. Assessment of intracranial blood flow velocities using a computer controlled vasoactive stimulus: a comparison between phase contrast magnetic resonance angiography and transcranial Doppler ultrasonography. J. Magn. Reson. Imaging. 2013; 38 (3): 733–738. https://doi.org/10.1002/jmri.23911
36.Geurts L.J., Bhogal A.A., Siero J.C.W. et al. Vascular reactivity in small cerebral perforating arteries with 7T phase contrast MRI – A proof of concept study. Neuroimage. 2018; 172: 470–477. https://doi.org/10.1016/j.neuroimage.2018.01.055
37.Nighoghossian N., Berthezene Y., Meyer R. et al. Assessment of cerebrovascular reactivity by dynamic susceptibility contrast-enhanced MR imaging. J. Neurol. Sci. 1997; 149 (2): 171–176. https://doi.org/10.1016/S0022-510X(97)05393-8
38.Lu H., Liu P., Yezhuvath U. et al. MRI Mapping of Cerebrovascular Reactivity via Gas Inhalation Challenges. J. Vis. Exp. 2014; 94: 52306. https://doi.org/10.3791/52306
39.Lajoie I., Tancredi F.B., Hoge R.D. Regional Reproducibility of BOLD Calibration Parameter M, OEF and Resting-State CMRO2 Measurements with QUO2 MRI. PLoS One. 2016; 11 (9): e0163071. https://doi.org/10.1371/journal.pone.0163071
40.Hare H.V., Germuska M., Kelly M.E., Bulte D.P. Comparison of CO 2 in Air Versus Carbogen for the Measurement of Cerebrovascular Reactivity with Magnetic Resonance Imaging. J. Cerebral. Blood Flow Metab. 2013; 33 (11): 1799–1805. https://doi.org/10.1038/jcbfm.2013.131
41.Wise R.G., Pattinson K.T., Bulte D.P. et al. Dynamic Forcing of End-Tidal Carbon Dioxide and Oxygen Applied to Functional Magnetic Resonance Imaging: J. Cerebral. Blood Flow Metab. 2007; 27 (8): 1521–1532. https://doi.org/10.1038/sj.jcbfm.9600465
42.Nunn J.F., Hill D.W. Respiratory dead space and arterial to end-tidal CO 2 tension difference in anesthetized man. J. App. Physiol. 1960; 15 (3): 383–389.
43.McSwain S.D., Hamel D.S., Smith P.B. et al. End-tidal and arterial carbon dioxide measurements correlate across all levels of physiologic dead space. Respir. Care. 2010; 55 (3): 288–293
44.Liu P., Welch B.G., Li Y. et al. Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI. NeuroImage. 2017; 146: 715–723. https://doi.org/10.1016/j.neuroimage.2016.09.063
45.Tancredi F.B., Lajoie I., Hoge R.D. A simple breathing circuit allowing precise control of inspiratory gases for experimental respiratory manipulations. BMC Res. Notes. 2014; 7 (1): 235. https://doi.org/10.1186/1756-0500-7-235
46.Driver I., Blockley N., Fisher J. et al. The change in cerebrovascular reactivity between 3 T and 7 T measured using graded hypercapnia. NeuroImage. 2010; 51 (1): 274–279. https://doi.org/10.1016/j.neuroimage.2009.12.113
47.Poublanc J., Crawley A.P., Sobczyk O. et al. Measuring Cerebrovascular Reactivity: The Dynamic Response to a Step Hypercapnic Stimulus: J. Cerebral Blood Flow Metab. 2015; 35 (11): 1746–1756. https://doi.org/10.1038/jcbfm.2015.114
48.Leoni R.F., Oliveira I.A.F., Pontes-Neto O.M. et al. Cerebral blood flow and vasoreactivity in aging: an arterial spin labeling study. Brazilian J. Med. Biol. Res. 2017; 50 (4). https://doi.org/10.1590/1414-431x20175670
49.Blockley N.P., Harkin J.W., Bulte D.P. Rapid cerebrovascular reactivity mapping: Enabling vascular reactivity information to be routinely acquired. NeuroImage. 2017; 159: 214–223. https://doi.org/10.1016/j.neuroimage.2017.07.048
50.Fisher J.A., Sobczyk O., Crawley A. et al. Assessing cerebrovascular reactivity by the pattern of response to progressive hypercapnia. Human Brain Mapping. 2017; 38 (7): 3415–3427. https://doi.org/10.1002/hbm.23598
51.Spano V.R., Mandell D.M., Poublanc J. et al. CO 2 Blood Oxygen Level–dependent MR Mapping of Cerebrovascular Reserve in a Clinical Population: Safety, Tolerability, and Technical Feasibility. Radiology. 2013; 266 (2): 592–598. https://doi.org/10.1148/radiol.12112795
52.Moreton F.C., Dani K.A., Goutcher C. et al. Respiratory challenge MRI: Practical aspects. NeuroImage: Clin. 2016; 11: 667–677. https://doi.org/10.1016/j.nicl.2016.05.003
53.Thomas B.P., Liu P., Park D.C. et al. Cerebrovascular Reactivity in the Brain White Matter: Magnitude, Temporal Characteristics, and Age Effects: J. Cerebral. Blood Flow Metab. 2013. https://doi.org/10.1038/jcbfm.2013.194
54.Pinto J., Bright M.G., Bulte D.P., Figueiredo P. Cerebrovascular Reactivity Mapping Without Gas Challenges: A Methodological Guide. Front. Physiol. 2020; 11: 608475. https://doi.org/10.3389/fphys.2020.608475
55.Pillai J.J., Mikulis D.J. Cerebrovascular Reactivity Mapping: An Evolving Standard for Clinical Functional Imaging. Am. J. Neuroradiol. 2015; 36 (1): 7–13. https://doi.org/10.3174/ajnr.A3941
56.Bright M.G., Murphy K. Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance. NeuroImage. 2013; 83: 559–568. https://doi.org/10.1016/j.neuroimage.2013.07.007
57.Tancredi F.B., Hoge R.D. Comparison of cerebral vascular reactivity measures obtained using breath-holding and CO 2 inhalation. J. Cereb. Blood Flow Metab. 2013; 33 (7): 1066–1074. https://doi.org/10.1038/jcbfm.2013.48
58.Halani S., Kwinta J.B., Golestani A.M. et al. Comparing cerebrovascular reactivity measured using BOLD and cerebral blood flow MRI: The effect of basal vascular tension on vasodilatory and vasoconstrictive reactivity. NeuroImage. 2015; 110: 110–123. https://doi.org/10.1016/j.neuroimage.2015.01.050
59.Liu P., Li Y., Pinho M. et al. Cerebrovascular reactivity mapping without gas challenges. NeuroImage. 2017; 146: 320–326. https://doi.org/10.1016/j.neuroimage.2016.11.054
60.Taneja K., Lu H., Welch B.G. et al. Evaluation of cerebrovascular reserve in patients with cerebrovascular diseases using resting-state MRI: A feasibility study. Magn. Reson. Imaging. 2019; 59: 46–52. https://doi.org/10.1016/j.mri.2019.03.003
61.Kim H.J., Kim T.W., Ryu S.Y. et al. Acetazolamide-challenged perfusion magnetic resonance imaging for assessment of cerebrovascular reserve capacity in patients with symptomatic middle cerebral artery stenosis: comparison with technetium-99m-hexamethylpropyleneamine oxime single-photon emission computed tomography. Clin. Imaging. 2011; 35 (6): 413–420. https://doi.org/10.1016/j.clinimag.2011.03.001
62.Grandin C.B., Bol A., Smith A.M. et al. Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: repeatabilily and comparison with PET in humans. NeuroImage. 2005; 26 (2): 525–535. https://doi.org/10.1016/j.neuroimage.2005.02.028
63.Ma J., Mehrkens J.H., Holtmannspoetter M. et al. Perfusion MRI before and after acetazolamide administration for assessment of cerebrovascular reserve capacity in patients with symptomatic internal carotid artery (ICA) occlusion: comparison with99m Tc-ECD SPECT. Neuroradiology. 2007; 49 (4): 317–326. https://doi.org/10.1007/s00234-006-0193-x
64.Fisher J.A., Venkatraghavan L., Mikulis D.J. Magnetic Resonance Imaging–Based Cerebrovascular Reactivity and Hemodynamic Reserve. Stroke. 2018; 49 (8): 2011–2018. https://doi.org/10.1161/STROKEAHA.118.021012
65.Gupta A., Chazen J.L., Hartman M. et al. Cerebrovascular Reserve and Stroke Risk in Patients with Carotid Stenosis or Occlusion: A Systematic Review and Meta-Analysis. Stroke; J. Cerebral. Circ. 2012; 43 (11): 2884–2891. https://doi.org/10.1161/STROKEAHA.112.663716
66.Goode S.D., Altaf N., Munshi S. et al. Impaired Cerebrovascular Reactivity Predicts Recurrent Symptoms in Patients with Carotid Artery Occlusion: A Hypercapnia BOLD fMRI Study. Am. J. Neuroradiol. 2016; 37 (5): 904–909. https://doi.org/10.3174/ajnr.A4739
67.Papassin J., Heck O., Condamine E. et al. Impaired cerebrovascular reactivity is associated with recurrent stroke in patients with severe intracranial arterial stenosis: A C02 BOLD fMRI study. J. Neuroradiol. 2021; 48 (5): 339–345. https://doi.org/10.1016/j.neurad.2020.04.005
68.Mandell D.M., Han J.S., Poublanc J. et al. Quantitative Measurement of Cerebrovascular Reactivity by Blood Oxygen Level-Dependent MR Imaging in Patients with Intracranial Stenosis: Preoperative Cerebrovascular Reactivity Predicts the Effect of Extracranial-Intracranial Bypass Surgery. Am. J. Neuroradiol. 2011; 32 (4): 721–727. https://doi.org/10.3174/ajnr.A2365
69.Sebok M., van Niftrik C.H.B., Winklhofer S. et al. Mapping Cerebrovascular Reactivity Impairment in Patients With Symptomatic Unilateral Carotid Artery Disease. J. Am. Heart Assoc.: Cardiovasc. Cerebrovasc. Dis. 2021; 10 (12): e020792. https://doi.org/10.1161/JAHA.121.020792
70.Kaczmarz S., Gottler J., Petr J. et al. Hemodynamic impairments within individual watershed areas in asymptomatic carotid artery stenosis by multimodal MRI. J. Cereb. Blood Flow Metab. 2021; 41 (2): 380–396. https://doi.org/10.1177/0271678X20912364
71.Sobczyk O., Sam K., Mandell D.M. et al.Cerebrovascular Reactivity Assays Collateral Function in Carotid Stenosis. Front. Physiol. 2020; 11: 1031. https://doi.org/10.3389/fphys.2020.01031
72.Smeeing D.P.J., Hendrikse J., Petersen E.T. et al. Arterial Spin Labeling and Blood Oxygen Level-Dependent MRI Cerebrovascular Reactivity in Cerebrovascular Disease: A Systematic Review and Meta-Analysis. Cerebrovasc. Dis. 2016; 42 (3–4): 288–307. https://doi.org/10.1159/000446081
73.Sleight E., Stringer M.S., Marshall I. et al. Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review. Front. Physiol. 2021; 12: 643468. https://doi.org/10.3389/fphys.2021.643468
74.Sobczyk O., Sayin E.S., Sam K. et al. The Reproducibility of Cerebrovascular Reactivity Across MRI Scanners. Front. Physiol. 2021; 12: 668662. https://doi.org/10.3389/fphys.2021.668662
75.Sobczyk O., Battisti-Charbonney A., Poublanc J. et al. Assessing cerebrovascular reactivity abnormality by comparison to a reference atlas. J. Cerebral. Blood Flow Metab. 2015; 35 (2): 213–220. https://doi.org/10.1038/jcbfm.2014.184

Magnetic resonance imaging for cerebrovascular reactivity assessment

Nikogosova A. K., Lelyuk S. E., Lelyuk V. G.

Purpose. To analyze the publications related to the technique of MRI mapping of cerebrovascular reactivity.Materials and methods. We have analyzed 75 publications (4 Russian, 71 foreign), published in the period from 1960 to 2021 years. More than half of these articles were published in the last ten years, with 26 studies – in the period from 2016 to 2021 years.Results. The article systematizes methods for assessing cerebrovascular reactivity and approaches to assessing cerebrovascular reactivity by MRI. The technique of non-enhanced MRI mapping of cerebrovascular reactivity with a hypercapnic challenge is described in detail; alternative vasoactive stimuli are also considered. Issues related to data processing and evaluation of research results were discussed.Conclusion. Impairment of cerebrovascular reactivity plays an important role in the pathogenesis of cerebrovascular diseases. Over the past decades, various radionuclide and ultrasound methods have been widely used to assess cerebrovascular reactivity. In recent years the interest of researchers in MRI as a method of mapping cerebrovascular reactivity has increased significantly. Noninvasiveness, safety, absence of radiation exposure, and good tolerability are the absolute advantages of MRI mapping over other methods of assessing cerebrovascular reactivity. However, the variety of methodological approaches to MRI mapping of cerebrovascular reactivity causes significant variability in the results of the study. Standardization of the procedure should be the first step toward the introduction of MRI mapping of cerebrovascular reactivity into clinical practice.

Keywords:
цереброваскулярная реактивность, цереброваскулярный резерв, МРТ, cerebrovascular reactivity, cerebrovascular reserve, MRI

Новости   Магазин   Журналы   Контакты   Правила   Доставка   О компании  
ООО Издательский дом ВИДАР-М, 2024