Новости | Магазин | Журналы | Контакты | Правила | Доставка | |
Вход Регистрация |
Цель исследования: с помощью протонной магнитно-резонансной спектроскопии (1Н МРС) определить возможность неинвазивной оценки влияния креатина и бета-аланина на скорость восстановления уровня рН в мышце после предельной нагрузки.Материал и методы. В качестве тестируемых биологически активных веществ (БАВ) были взяты креатина моногидрат и бета-аланин, применяемые согласно рекомендациям производителя. На первом этапе были построены калибровочные кривые зависимости рН от величины химического сдвига при снятии 1Н спектров модельных растворов дипептида карнозина для неинвазивного определения внутримышечного рН. Далее проводились эксперименты на лабораторных животных (мыши линии BALB/c) с использованием 9 Тл ЯМР спектрометра Bruker Advance III WB 400 МГц WB (Bruker, Germany). Следующим шагом стали эксперименты на добровольцах по отработке методики оценки эффектов БАВ на прямой четырехглавой мышце бедра. Использовался функциональный тест pwc170 в варианте степ-теста, позволяющий достичь закисления цитоплазмы миоцитов лактатом и оценить эффективность исследуемых БАВ на запас выносливости и функциональность аэробных систем по скорости восстановления уровня рН исследуемой мышцы. Дальнейшее сканирование осуществлялось с помощью высокопольного магнитно-резонансного томографа (Philips Healthcare, Achieva 3.0 Tл, North Braband, the Nederlands) и двух поверхностных кольцевидных радиочастотных катушек SENSE Flex-L.Результаты. Методом 1Н МРС было оценено влияние перорального приема креатина и бета-аланина на восстановление рН прямой четырехглавой мышцы бедра после закисления цитоплазмы миоцитов лактатом. Эксперименты с участием мелких лабораторных животных показали необходимость разработки и использования более точных методик выделения вокселя и подавления сигнала от жировой ткани при доклинической in vivo 1H спектроскопии для надежной фиксации химических сдвигов пиков карнозина. С помощью полученных для добровольцев протоколов удалось достичь воспроизводимости результатов, оптимальных соотношения сигнал/шум и ширины спектральных пиков карнозина с помощью 1H МРС при 3 Tл в прямой четырехглавой мышце бедра.Заключение. Полученные с помощью 1Н МРС данные на добровольцах позволяют сделать вывод, что разработанная методика дает возможность неинвазивной оценки влияния БАВ на скорость восстановления уровня рН в мышце после предельной нагрузки в режиме реального времени in vivo.
Ключевые слова:
магнитно-резонансная томография, рН-буферизация, карнозин, БАД, magnetic resonance imaging, рН-buffering, carnosine, BAS
Литература:
1.Boldyrev A.A., Aldini G., Derave W. Physiology and pathophysiology of carnosine. Physiol. Rev. 2013; 93:1803–1845. https://doi.org/10.1152/physrev.00039.2012
2.Saunders B., Elliott-Sale K., Artioli G.G. et al. ?-Alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br. J. Sports Med. 2017; 51: 658–669. https://doi.org/10.1136/bjsports-2016-096396
3.Artioli G.G., Sale C., Jones R.L. Carnosine in health and disease. Eur. J. Sport. Sci. 2018; 19: 30–39. https://doi.org/10.1080/17461391.2018.1444096
4.Matthews J.J., Artioli G.G., Turner M.D., Sale C. The Physiological Roles of Carnosine and ? -Alanine in Exercising Human Skeletal Muscle. Med. Sci. Sports Exerc. 2019; 51: 2098–2108. https://doi.org/10.1249/MSS.0000000000002033
5.Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids. 2020; 52 (3): 329–360. https://doi.org/10.1007/s00726-020-02823-6
6.Baker J.S., McCormick M.C., Robergs R.A. Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. J. Nutr. Metab. 2010; 2010: 905612. https://doi.org/10.1155/2010/905612
7.Hargreaves M., Spriet L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020; 2 (9): 817–828. https://doi.org/10.1038/s42255-020-0251-4
8.Lenney J.F., Peppers S.C., Kucera-Orallo C.M., George R.P. Characterization of human tissue carnosinase. Biochem. J. 1985; 228 (3): 653–660. https://doi.org/10.1042/bj2280653
9.Hamilton G., Middleton M.S., Bydder M. et al. Effect of PRESS and STEAM sequences on magnetic resonance spectroscopic liver fat quantification. J. Magn. Reson. Imaging. 2009; 30 (1): 145–152. https://doi.org/10.1002/jmri.21809
10.Rozhkova Z.Z., Kulchitsky O.K. Magnetic resonance spectroscopy (in vivo 1H MRS) in clinical neurology. Int. Neurol. J. 2016; 83 (5): 13–26. https://doi.org/10.22141/2224-0713.5.83.2016
11.Markley J.L. Biological Applications of Magnetic Resonance. Academic New York, 1979: 397–463. ISBN 978-0-12-640750-1. https://doi.org/10.1016/B978-0-126-40750-1.X5001-1
12.Rabenstein D.L., Isab A.A. Determination of the intracellular pH of intact erythrocytes by 1H NMR spectroscopy. Anal. Biochem. 1982; 121: 423–432. https://doi.org/10.1016/0003-2697(82)90502-4
13.Yoshizaki K., Seo Y., Nishikawa H. High-resolution proton magnetic resonance spectra of muscle. Biochim. Biophys. Acta. 1981; 678: 283–291. https://doi.org/10.1016/0304-4165(81)90218-X
14.Arus C., Barany M. Application of high-field 1H-NMR spectroscopy for the study of perifused amphibian and excised mammalian muscles. Biochim. Biophys. Acta. 1986; 886: 411–424. https://doi.org/10.1016/0167-4889(86)90177-1
15.Gadian D.G., Proctor E., Williams S.R. Some recent applications of 1H NMR spectroscopy in vivo. Ann. N.Y. Acad. Sci. 1987; 508: 241–250. https://doi.org/10.1111/j.1749-6632.1987.tb32908.x
16.Williams S.R., Gadian D.G., Proctor E. Proton NMR studies of muscle metabolites in vivo. J. Magn. Reson. 1985; 63: 406–412. https://doi.org/10.1016/0022-2364(85)90336-1
17.Hetherington H.P., Hamm J.R., Pan J.W. et al. A fully localized 1H homonuclear editing sequence to observe lactate in human skeletal muscle after exercise. J. Magn. Reson. 1969; 82: 86–96. https://doi.org/10.1016/0022-2364(89)90167-4
18.Taylor D.J., Bore P.J., Styles P. et al. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol. Biol. Med. 1983; 1: 77–94. PMID: 6679873
19.Just Kukurova I., Valkovic L., Ukropec J. et al. Improved spectral resolution and high reliability of in vivo (1) H MRS at 7 T allow the characterization of the effect of acute exercise on carnosine in skeletal muscle. NMR Biomed. 2016; 29 (1): 24–32. https://doi.org/10.1002/nbm.3447
20.Kapilevich L.V., Zakharova A.N., Kabachkova A.V. et al. Dynamic and Static Exercises Differentially Affect Plasma Cytokine Content in Elite Endurance- and Strength-Trained Athletes and Untrained Volunteers. Front. Physiol. 2017; 8: 35. https://doi.org/10.3389/fphys.2017.00035
21.Kapilevich L.V., Yezhova G.S., Zakharova A.N. et al. Brain bioelectrical activity and cerebral hemodynamics in athletes under combined cognitive and physical loading. Hum. Physiol. 2019; 45: 64–173. https://doi.org/10.1134/S0362119719010080
22.Kushmerick M.J., Moerland T.S., Wiseman R.W. Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi. Proc. Natl. Acad. Sci. USA. 1992; 89 (16): 7521–7525. https://doi.org/10.1073/pnas.89.16.7521
23.Blancquaert L., Baba S.P., Kwiatkowski S. et al. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by ? -alanine transamination. J. Physiol. 2016; 594 (17): 4849–4863. https://doi.org/10.1073/10.1113/JP272050
24.Kapilevich L.V., Kologrivova V.V., Zakharova A.N., Mourot L. Post-exercise Endothelium-Dependent Vasodilation Is Dependent on Training Status. Front Physiol. 2020; 11: 348. https://doi.org/10.3389/fphys.2020.00348
25.Ortlepp J.R., Metrikat J., Albrecht M., Maya-Pelzer P. Relationship between physical fitness and lifestyle behaviour in healthy young men. Eur. J. Cardiovasc. Prev. Rehabil. 2004; 11 (3): 192–200. https://doi.org/10.1097/01.hjr.0000131578.48136.85
26.Svannshvili R.A., Sopromadze Z.G., Kakhabrishvili Z.G. et al. Athletes' physical working capacity. Georgian Med. News. 2009; 166: 68–73. PMID: 19202224
27.Pan J.W., Hamm J.R., Rothman D.L. Intracellular pH in human skeletal muscle by 1H NMR. Proc. Natl. Acad. Sci. USA. 1988; 85 (21): 7836–7839. https://doi.org/10.1073/pnas.85.21.7836
28.Pereyra A.S., Lin C.T., Sanchez D.M. et al. Skeletal muscle undergoes fiber type metabolic switch without myosin heavy chain switch in response to defective fatty acid oxidation. Mol. Metab. 2022; 59:101456. https://doi.org/10.1016/j.molmet.2022.101456
29.Schroder L., Bachert P. Evidence for a dipolar-coupled AM system in carnosine in human calf muscle from in vivo 1H NMR spectroscopy. J. Magn. Reson. 2003; 164 (2): 256–269. https://doi.org/10.1016/j.molmet.2022.101456
30.Boesch C., Kreis R. Dipolar coupling and ordering effects observed in magnetic resonance spectra of skeletal muscle. NMR Biomedicine. 2001; 14: 140–148. https://doi.org/10.1002/nbm.684
31.Yquel R.J., Arsac L.M., Thiaudiere E. et al. Effect of creatine supplementation on phosphocreatine resynthesis, inorganic phosphate accumulation and pH during intermittent maximal exercise. J. Sports Sci. 2002; 20 (5): 427–437. https://doi.org/10.1080/026404102317366681
32.Sale C., Saunders B., Harris R.C. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids. 2010; 39 (2): 321–333. https://doi.org/10.1007/s00726-009-0443-4
33.Schnuck J.K., Sunderland K.L., Kuennen M.R., Vaughan R.A. Characterization of the metabolic effect of ? -alanine on markers of oxidative metabolism and mitochondrial biogenesis in skeletal muscle. J. Exerc. Nutrition. Biochem. 2016; 20 (2): 34–41. https://doi.org/10.20463/jenb.2016.06.20.2
Purpose of the study: To determine the possibility of a non-invasive evaluation of the biologically active substances (BAS) effect on the rate of a pH level restoration in a muscle after a maximum load using 1H magnetic resonance spectroscopy (MRS).Materials and methods. Creatine monohydrate and beta-alanine were taken as tested biologically active substances, used according to the manufacturer's recommendations. At the first stage, calibration curves of a pH dependence on the magnitude of chemical shifts were plotted during assigning 1H spectra of model carnosine dipeptide solutions for non-invasive determination of intramuscular pH. Further experiments were carried out on laboratory animals (mice) using a 9 T NMR spectrometer Bruker Advance III WB 400MHz WB (Bruker, Germany). In experiments on volunteers the functional test pwc170 was used for assessing the ergogenic effects of biologically active substances on rectus quadriceps femoris. The test allows to achieve the level of myocytes cytoplasm acidification with lactate, and the effectiveness of functional biologically active substances on endurance, and also the function of aerobic systems by the muscle pH rate of recovery. Detection was performed using a high-field magnetic resonance imaging scanner (Philips Healthcare, Achieva 3.0T, North Braband, The Netherlands) and two SENSE Flex-L surface ring radiofrequency coils.Results. The effect of oral intake of creatine and beta-alanine on the restoration of rectus quadriceps femoris muscle pH after an acidification of the myocytes cytoplasm with lactate was evaluated using the 1H MRS method. Reproducible results with optimal signal-to-noise ratios and width of carnosine spectral peaks were achieved in volunteers using individual protocols and 1H MRS at 3T in the quadriceps femoris. Animal experiments have highlighted the need to develop and use more accurate techniques for voxel extraction and fat suppression during in vivo 1H spectroscopy to reliably capture the chemical shifts of carnosine peaks.Conclusion. The data obtained using 1H MRS on volunteers allow us to conclude that the developed method makes it possible to non-invasively assess the effect of biologically active substances on the rate of restoration of pH level in a muscle after a critical load in real time in vivo.
Keywords:
магнитно-резонансная томография, рН-буферизация, карнозин, БАД, magnetic resonance imaging, рН-buffering, carnosine, BAS