Новости | Магазин | Журналы | Контакты | Правила | Доставка | |
Вход Регистрация |
Цель исследования: анализ возможностей радиомики в качестве источника дополнительной диагностической информации о структурной зрелости легких.Материал и методы. В ретроспективное исследование включили 72 беременных: 35 с изолированной врожденной диафрагмальной грыжей плода (1-я группа, основная) и 37 без патологии легких плода (2-я группа, контрольная). Были получены фронтальные или кософронтальные Т2ВИ (T2 FSE). Сегментация зон интереса на уровне легких плода проводилась вручную с использованием ITK-Snap. С использованием pyradiomics было извлечено 107 радиомических признаков. Статистический анализ проводился с помощью пакета статистического анализа Statistica 10 (США) для выявления корреляции между значениями признаков и целевой переменной (наличие патологии легких при врожденной диафрагмальной грыже), а также для отображения различий в группах сравнения в зависимости от выявленных показателей.Результаты. Были определены статистически значимые признаки для 2D- и 3D-сегментаций (p < 0,05). Для 2D- и 3D-сегментаций количество значимых признаков оказалось равно 14 и 73 соответственно. После исключения признаков, имеющих взаимные корреляции, их количество сократилось до 6 и 8 для одиночных срезов и 3D-изображений соответственно. Также были подсчитаны коэффициенты корреляции между признаками и наличием патологии легких. В случае использования 3D-изображений количество признаков, имеющих значимые коэффициенты корреляции (r > 0,4, p < 0,05), оказалось равно 20, в то время как для одиночных срезов данный показатель равен 3.Заключение. Полученные данные позволяют сделать вывод о целесообразности применения текстурного анализа 3D-МРТ-изображений в качестве источника дополнительной диагностической информации о структурной зрелости легких.
Ключевые слова:
фетальная МРТ, радиомика, акушерство и гинекология, текстурный анализ, врожденная диафрагмальная грыжа, fetal MRI, radiomics, obstetrics and gynecology, texture analysis, congenital diaphragmatic hernia
Литература:
1.Lambin P., Rios-Velazquez E., Leijenaar R. et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer. 2012; 48 (4): 441–446. http://doi.org/10.1016/j.ejca.2011.11.036
2.Kumar V., Gu Y., Basu S. et al. Radiomics: the process and the challenges. Magn. Reson. Imaging. 2012; 30 (9): 1234–1248. http://doi.org/10.1016/j.mri.2012.06.010
3.Mirestean C.C., Pagute O., Buzea C. et al. Radiomic Machine Learning and Texture Analysis - New Horizons for Head and Neck Oncology. Maedica (Bucur). 2019; 14 (2): 126–130. http://doi.org/10.26574/maedica.2019.14.2.126
4.Говорухина В.Г., Семенов С.С., Гележе П.Б., Диденко В.В., Морозов С.П., Андрейченко А.Е. Роль маммографии в радиомике рака молочной железы. Digital Diagnostics. 2021; 2 (2): 185–199. http://doi.org/10.17816/DD70479
5.Bae S., Choi Y.S., Ahn S.S. et al. Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction. Radiology. 2018; 289 (3): 797–806. http://doi.org/10.1148/radiol.2018180200
6.Coroller T.P., Agrawal V., Huynh E. et al. Radiomic-Based Pathological Response Prediction from Primary Tumors and Lymph Nodes in NSCLC. J. Thorac. Oncol. 2017; 12 (3): 467–476. http://doi.org/10.1016/j.jtho.2016.11.2226
7.Du Y., Fang Z., Jiao J. et al. Application of ultrasound-based radiomics technology in fetal-lung-texture analysis in pregnancies complicated by gestational diabetes and/or pre-eclampsia. Ultrasound Obstet Gynecol. 2021; 57 (5): 804–812. http://doi.org/10.1002/uog.22037
8.Watzenboeck M.L., Heidinger B.H., Rainer J. et al. Reproducibility of 2D versus 3D radiomics for quantitative assessment of fetal lung development: a retrospective fetal MRI study. Insights. Imaging. 2023; 14 (1): 31. http://doi.org/10.1186/s13244-023-01376-y
9.Heinzerling N., Wagner A. Fetal Diagnosis and Therapy: A Reference Handbook for Pediatric Surgeons. Fetal Diagn. Ther. 2013.
10.Jokhi R.P., Whitby E.H. Magnetic resonance imaging of the fetus. Dev. Med. Child Neurol. 53 (1): 18–28. http://doi.org/10.1111/j.1469-8749.2010.03813.x
11.Prayer D., Malinger G., De Catte L. et al.; ISUOG Clinical Standards Committee. ISUOG Practice Guidelines (updated): performance of fetal magnetic resonance imaging. Ultrasound Obstet Gynecol. 2023; 61 (2): 278–287. http://doi.org/10.1002/uog.26129
12.Prayer D., Malinger G., Brugger P.C. et al. ISUOG Practice Guidelines: performance of fetal magnetic resonance imaging. Ultrasound Obstet. Gynecol. 2017; 49 (5): 671–680. http://doi.org/10.1002/uog.17412
13.Dutemeyer V., Cordier A.G., Cannie M.M. et al. Prenatal prediction of postnatal survival in fetuses with congenital diaphragmatic hernia using MRI: lung volume measurement, signal intensity ratio, and effect of experience. J. Matern. Fetal Neonatal Med. 2022; 35 (6): 1036–1044. http://doi.org/10.1080/14767058.2020.1740982
14.Сыркашев Е.М., Солопова А.Е., Быченко В.Г., Буров А.А., Подуровская Ю.Л., Гус А.И. Антенатальная биометрия легких при врожденной диафрагмальной грыже по данным МРТ. REJR. 2020; 10 (4): 169–178. http://doi.org/10.21569/2222-7415-2020-10-4-169-178
15.Farrugia M.K., Raza S.A., Gould S., Lakhoo K. Congenital lung lesions: classification and concordance of radiological appearance and surgical pathology. Pediatr. Surg. Int. 2008; 24 (9): 987–991. http://doi.org/10.1007/s00383-008-2201-1
16.Zani A., Chung W.K., Deprest J. et al. Congenital diaphragmatic hernia. Nat. Rev. Dis. Primers. 2022; 8 (1): 37. http://doi.org/10.1038/s41572-022-00362-w
17.Yushkevich P.A., Gao Y., Gerig G. ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA. 2016; 3342–3345. http://doi.org/10.1109/EMBC.2016.7591443
18.Shchegolev A.I., Tumanova U.N. Pulmonary hypoplasia: causes and pathological finding. Int. J. Appl. Fundam. Res. 2017; 4: 101–153.
19.Ogawa R., Kido T., Nakamura M. et al. Magnetic resonance assessment of fetal lung maturity: comparison between signal intensity and volume measurement. Jpn. J. Radiol. 2018; 36 (7): 444–449. http://doi.org/10.1007/s11604-018-0745-0
20.Keller T.M., Rake A., Michel S.C. et al. MR assessment of fetal lung development using lung volumes and signal intensities. Eur. Radiol. 2004; 14 (6): 984–989. http://doi.org/10.1007/s00330-004-2256-x
21.Oka Y., Rahman M., Sasakura C. et al. Prenatal diagnosis of fetal respiratory function: evaluation of fetal lung maturity using lung-to-liver signal intensity ratio at magnetic resonance imaging. Prenat. Diagn. 2014; 34 (13): 1289–1294. http://doi.org/10.1002/pd.4469
22.Moshiri M., Mannelli L., Richardson M.L. et al. Fetal lung maturity assessment with MRI fetal lung-to-liver signal-intensity ratio. Am. J. Roentgenol. 2013; 201 (6): 1386–1390. http://doi.org/10.2214/AJR.12.9679
23.Mills M., Winter T.C., Kennedy A.M., Woodward P.J. Determination of fetal lung maturity using magnetic resonance imaging signal intensity measurements. Ultrasound Q. 2014; 30 (1): 61–67. http://doi.org/10.1097/RUQ.0000000000000054
24.Yamoto M., Iwazaki T., Takeuchi K. et al. The fetal lung-to-liver signal intensity ratio on magnetic resonance imaging as a predictor of outcomes from isolated congenital diaphragmatic hernia. Pediatr. Surg. Int. 2018; 34 (2): 161–168. http://doi.org/10.1007/s00383-017-4184-2
25.Cordier A.G., Russo F.M., Deprest J., Benachi A. Prenatal diagnosis, imaging, and prognosis in Congenital Diaphragmatic Hernia. Semin. Perinatol. 2020; 44 (1): 51163. http://doi.org/10.1053/j.semperi.2019.07.002
26.Madenci A.L., Church J.T., Gajarski R.J. et al. Pulmonary Hypertension in Patients with Congenital Diaphragmatic Hernia: Does Lung Size Matter? Eur. J. Pediatr. Surg. 2018; 28 (6): 508–514. http://doi.org/10.1055/s-0037-1607291
27.Basurto D., Russo F.M., Papastefanou I. et al. Pulmonary hypertension in congenital diaphragmatic hernia: Antenatal prediction and impact on neonatal mortality. Prenat. Diagn. 2022; 42 (10): 1303–1311. http://doi.org/10.1002/pd.6207
28.Petroze R.T., Caminsky N.G., Trebichavsky J. et al. Prenatal prediction of survival in congenital diaphragmatic hernia: An audit of postnatal outcomes. J. Pediatr. Surg. 2019; 54 (5): 925–931. http://doi.org/10.1016/j.jpedsurg.2019.01.021
29.Moore R.J., Strachan B., Tyler D.J. et al. In vivo diffusion measurements as an indication of fetal lung maturation using echo planar imaging at 0.5T. Magn. Reson. Med. 2001; 45 (2): 247–253. http://doi.org/10.1002/1522-2594(200102)45:23.0.co;2-m
30.Balassy C., Kasprian G., Brugger P.C. et al. Diffusion-weighted MR imaging of the normal fetal lung. Eur. Radiol. 2008; 18 (4): 700–706. http://doi.org/10.1007/s00330-007-0784-x
31.Cannie M., Jani J., De Keyzer F. et al. Diffusion-weighted MRI in lungs of normal fetuses and those with congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 2009; 34 (6): 678–686. http://doi.org/10.1002/uog.7326
32.Manganaro L., Perrone A., Sassi S. et al. Diffusion-weighted MR imaging and apparent diffusion coefficient of the normal fetal lung: preliminary experience. Prenat. Diagn. 2008 Aug;28(8):745–748. http://doi.org/10.1002/pd.2041
33.Afacan O., Gholipour A., Mulkern R.V. et al. Fetal lung apparent diffusion coefficient measurement using diffusion-weighted MRI at 3 Tesla: Correlation with gestational age. J. Magn. Reson. Imaging. 2016; 44 (6): 1650–1655. http://doi.org/10.1002/jmri.25294
34.Ercolani G., Capuani S., Antonelli A. et al. IntraVoxel Incoherent Motion (IVIM) MRI of fetal lung and kidney: Can the perfusion fraction be a marker of normal pulmonary and renal maturation? Eur. J. Radiol. 2021; 139: 109726. http://doi.org/10.1016/j.ejrad.2021.109726
35.Sethi S., Giza S.A., Goldberg E. et al. Quantification of 1.5 T T1 and T2* Relaxation Times of Fetal Tissues in Uncomplicated Pregnancies. J. Magn. Reson. Imaging. 2021; 54 (1): 113–121. http://doi.org/10.1002/jmri.27547
36.Prayer F., Watzenbock M.L., Heidinger B.H. et al. Fetal MRI radiomics: non-invasive and reproducible quantification of human lung maturity. Eur. Radiol. 2023; 33 (6): 4205–4213. http://doi.org/10.1007/s00330-022-09367-1
Objectives. Analysis of possibilities of radiomics as a source of additional diagnostic information about the structural maturity of the lungsMaterials and methods. A retrospective study included 72 pregnant women: 35 with congenital fetal diaphragmatic hernia (group 1) and 37 without fetal lung pathology (group 2). Frontal or co-frontal T2 images (T2 FSE) were obtained. Segmentation of regions of interest at the fetal lung level was performed manually with ITK-Snap. A total of 107 radiomic features were extracted using pyradiomics. The statistical analysis was performed using the STATISTICA 10 statistical analysis package (USA) to detect correlation between trait values and the target variable (presence of lung pathology in CDH), and to show differences in the comparison groups according to the detected parameters.Results. Statistically significant features were identified for 2D and 3D segmentations (p < 0.05). For 2D and 3D segmentations, the number of significant features was 14 and 73, respectively. After exclusion of features with cross-correlations, their number decreased to 6 and 8 for single slices and 3D images, respectively. Correlation coefficients between the features and the presence of lung pathology were also calculated. In the case of 3D images, the number of features with significant correlation coefficients (r > 0.4, p < 0.05) equaled 20, while for single-slice images this number was 3.Conclusion. The data obtained allow to conclude that it is reasonable to use texture analysis of the 3D MRI images as a source of additional diagnostic information concerning the structural maturity of the lungs.
Keywords:
фетальная МРТ, радиомика, акушерство и гинекология, текстурный анализ, врожденная диафрагмальная грыжа, fetal MRI, radiomics, obstetrics and gynecology, texture analysis, congenital diaphragmatic hernia